cache scheme
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 7)

H-INDEX

5
(FIVE YEARS 1)

Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 160
Author(s):  
Youngjun Kim ◽  
Jinwoo Park ◽  
Yeunwoong Kyung

Due to the dynamic mobility feature, the proactive flow rule cache method has become one promising solution in software-defined networking (SDN)-based access networks to reduce the number of flow rule installation procedures between the forwarding nodes and SDN controller. However, since there is a flow rule cache limit for the forwarding node, an efficient flow rule cache strategy is required. To address this challenge, this paper proposes the mobility-aware hybrid flow rule cache scheme. Based on the comparison between the delay requirement of the incoming flow and the response delay of the controller, the proposed scheme decides to install the flow rule either proactively or reactively for the target candidate forwarding nodes. To find the optimal number of proactive flow rules considering the flow rule cache limits, an integer linear programming (ILP) problem is formulated and solved using the heuristic method. Extensive simulation results demonstrate that the proposed scheme outperforms the existing schemes in terms of the flow table utilization ratio, flow rule installation delay, and flow rules hit ratio under various settings.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Li Yang ◽  
Xiangguang Kong ◽  
Yaowen Qi ◽  
Chengsheng Pan

Multiaccess edge computing (MEC) provides users with a network environment and computing storage capacity at the edge of the network, ensuring a deterministic service with low delivery delay. This paper introduces a new satellite-ground integrated collaborative caching network architecture based on MEC and studies the caching strategy. On the ground side, the edge nodes (ENs) are deployed to the user side to form a hierarchical collaborative cache mode centered on the base station. On the satellite side, we utilize intelligent satellite ENs to precache and multicast the highly popular contents, reducing the initial content delivery delay. Under the constraints of the user demand and storage capacity, we study the deployment and cache scheme of ENs and establish the delivery delay minimization problem. To solve the problem, we propose a content update decision parameter for content cache update and transform the problem into improving the hit rate of ENs. Simulation results show that the proposed MEC network architecture and content caching scheme can increase the caching system hit rate to 64% and reduce the average delay by 32.96% at most.


Algorithms ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 176
Author(s):  
Wei Zhu ◽  
Xiaoyang Zeng

Applications have different preferences for caches, sometimes even within the different running phases. Caches with fixed parameters may compromise the performance of a system. To solve this problem, we propose a real-time adaptive reconfigurable cache based on the decision tree algorithm, which can optimize the average memory access time of cache without modifying the cache coherent protocol. By monitoring the application running state, the cache associativity is periodically tuned to the optimal cache associativity, which is determined by the decision tree model. This paper implements the proposed decision tree-based adaptive reconfigurable cache in the GEM5 simulator and designs the key modules using Verilog HDL. The simulation results show that the proposed decision tree-based adaptive reconfigurable cache reduces the average memory access time compared with other adaptive algorithms.


Author(s):  
Hsin-Te Wu ◽  
Hsin-Hung Cho ◽  
Sheng-Jie Wang ◽  
Fan-Hsun Tseng

AbstractContent cache as well as data cache is vital to Content Centric Network (CCN). A sophisticated cache scheme is necessary but unsatisfied currently. Existing content cache scheme wastes router’s cache capacity due to redundant replica data in CCN routers. The paper presents an intelligent data cache scheme, viz content popularity and user location (CPUL) scheme. It tackles the cache problem of CCN routers for pursuing better hit rate and storage utilization. The proposed CPUL scheme not only considers the location where user sends request but also classifies data into popular and normal content with correspond to different cache policies. Simulation results showed that the CPUL scheme yields the highest cache hit rate and the lowest total size of cache data with compared to the original cache scheme in CCN and the Most Popular Content (MPC) scheme. The CPUL scheme is superior to both compared schemes in terms of around 8% to 13% higher hit rate and around 4% to 16% lower cache size. In addition, the CPUL scheme achieves more than 20% and 10% higher cache utilization when the released cache size increases and the categories of requested data increases, respectively.


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Xuefei Peng ◽  
Jiandong Li

In this paper, we propose a harvested energy maximization problem of simultaneous wireless information and power transfer (SWIPT) system with popularity cache scheme in dense small cell networks. Firstly, network model, content request, and popularity cache schemes are provided in the system model. Then, we establish a harvested energy maximization problem of SWIPT system with popularity cache scheme in dense small cell networks, where maximum transmit power of small cell base stations (SBSs), minimum rate requirement, i.e., quality of service (QoS) of user terminals (UTs), and power splitting ratio are considered. Further, an iterative power splitting ratio and power allocation optimization (IPSPA) algorithm is proposed to solve the formulated problem. Finally, the better performance of our proposed method is demonstrated through a number of simulations. These results are of significance for maximizing harvesting energy of UTs and reducing consumption of backhaul resources and energy.


2019 ◽  
Vol 25 (1) ◽  
pp. 58-63
Author(s):  
Jungwoo Jo ◽  
Sungsoon Park ◽  
Youjip Won
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document