Abstract
Using a novel suite of cosmological simulations zooming in on a megaparsec-scale intergalactic sheet (pancake) at z ∼ (3–5), we conduct an in-depth study of the thermal properties and H i content of the warm-hot intergalactic medium (WHIM) at those redshifts. The simulations span nearly three orders of magnitude in gas cell mass, ∼(7.7 × 106–1.5 × 104)M
⊙, one of the highest-resolution simulations of such a large patch of the intergalactic medium (IGM) to date. At z ∼ 5, a strong accretion shock develops around the pancake. Gas in the postshock region proceeds to cool rapidly, triggering thermal instabilities and generating a multiphase medium. We find the mass, morphology, and distribution of H i in the WHIM to all be unconverged, even at our highest resolution. Interestingly, the lack of convergence is more severe for the less-dense, metal-poor intrapancake medium (IPM) in between filaments and far outside galaxies. With increased resolution, the IPM develops a shattered structure with most of the H i in kiloparsec-scale clouds. From our lowest-to-highest resolution, the covering fraction of metal-poor (Z < 10−3
Z
⊙) Lyman-limit systems (N
H I > 1017.2cm−2) in the z ∼ 4 IPM increases from ∼(3–15)%, while that of metal-poor damped Lyα absorbers (N
H I > 1020cm−2) increases from ∼(0.2–0.6)%, with no sign of convergence. We find that a necessary condition for the formation of a multiphase shattered structure is resolving the cooling length, l
cool = c
s
t
cool, at T ∼ 105 K. If this is unresolved, gas “piles up” at T ≲ 105 K and further cooling becomes very inefficient. We conclude that state-of-the-art cosmological simulations are still unable to resolve the multiphase structure of the WHIM, with potentially far-reaching implications.