geosynchronous satellites
Recently Published Documents


TOTAL DOCUMENTS

119
(FIVE YEARS 20)

H-INDEX

13
(FIVE YEARS 2)

Author(s):  
Jorge Nicolas-Alvarez ◽  
Xavier Carreno-Megias ◽  
Oriol Fuste ◽  
Estel Ferrer ◽  
Miquel Albert ◽  
...  

2021 ◽  
Author(s):  
Sharat chandra Bhardwaj ◽  
Anurag Vidyarthi ◽  
Bhajan Singh Jassal ◽  
Ashish kumar Shukla

Abstract For the precise positioning application it is important to determine and eliminate the positioning error introduced by various sources such as the ionosphere. To develop a standalone precise navigation system, India has launched the seven satellite constellations of NavIC (Navigation with Indian Constellation) system to provide precision positioning over India and surrounded landmass. Since the ionospheric delay depends on the frequency of the satellite signal and NavIC systems work at different frequencies (L5 and S1) than GPS systems (L1 and L2), it is not possible to use the GPS data-driven study for NavIC based location calculations directly. Thus there is a need for a specialized ionospheric study for NavIC systems. In addition, the ionospheric delay is directly proportional to Slant Total Electron Content (STEC) which is dependent upon diurnal and seasonal solar activity. To achieve accurate positioning facilities, there is also a need for evaluation for seasonal variability of ionospheric delay correction for NavIC receivers. This paper deals with the STEC estimation; its smoothing, and removal of instrumental biases from STEC. The determined true STEC has been used to determine first-order ionospheric delay at L5 and S1 frequencies. The delay at S1 has been found less (2 to 7m) as compared to L5 (10 to 30m). Furthermore, the seasonal variability of ionospheric delay has been analyzed using about 19 months of data (from June 2017 to December 2018) and found that the ionospheric delay follows unique seasonal characteristics which can be utilized for delay modeling. It has been also observed that the geostationary satellites of the NavIC system are more appropriate than geosynchronous satellites for ionospheric related studies.


Author(s):  
Conor J. Benson ◽  
Charles J. Naudet ◽  
Daniel J. Scheeres ◽  
Joseph S. Jao ◽  
Lawrence G. Snedeker ◽  
...  

2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Tsutomu Nagatsuma ◽  
Aoi Nakamizo ◽  
Yasubumi Kubota ◽  
Masao Nakamura ◽  
Kiyokazu Koga ◽  
...  

AbstractPlasma variations in the geospace environment driven by solar wind–magnetosphere interactions are one of the major causes of satellite anomaly. To mitigate the effect of satellite anomaly, the risk of space weather disturbances predicted by space weather forecasting needs to be known in advance. However, the risk of satellite anomaly owing to space weather disturbances is not the same for all satellites, because the risk depends not only on the space environment itself but also on the design and materials of individual satellites. From the viewpoint of satellite operators, it is difficult to apply a general alert level of the space environment to the risk of individual satellites. To provide tailored space weather information, we have developed SECURES (Space Environment Customized Risk Estimation for Satellites) by combining models of the space environment and those of spacecraft charging. In SECURES, we focus on the risk of spacecraft charging (surface/internal) for geosynchronous satellites. For the risk estimation of surface charging, we have combined the global magnetosphere magnetohydrodynamics (MHD) model with the satellite surface charging models. For the risk estimation of internal charging, we have combined the radiation belt models with the satellite internal charging models. We have developed prototype products for both types of charging/electrostatic discharge (ESD). The development of SECURES and our achievements are introduced in this paper.


2021 ◽  
Author(s):  
Tsutomu Nagatsuma ◽  
Aoi Nakamizo ◽  
Yasubumi Kubota ◽  
Masao Nakamura ◽  
Kiyokazu Koga ◽  
...  

Abstract Plasma variations in the geospace environment driven by solar wind–magnetosphere interactions are one of the major causes of satellite anomaly. To mitigate the effect of satellite anomaly, the risk of space weather disturbances predicted by space weather forecasting needs to be known in advance. However, the risk of satellite anomaly owing to space weather disturbances is not the same for all satellites, because the risk depends not only on the space environment itself but also on the design and materials of individual satellites. From the viewpoint of satellite operators, it is difficult to apply a general alert level of the space environment to the risk of individual satellites. To provide tailored space weather information, we have developed SECURES (Space Environment Customized Risk Estimation for Satellites) by combining models of the space environment and those of spacecraft charging. In SECURES, we focus on the risk of spacecraft charging (surface/internal) for geosynchronous satellites. For the risk estimation of surface charging, we have combined the global magnetosphere magnetohydrodynamics (MHD) model with the satellite surface charging models. For the risk estimation of internal charging, we have combined the radiation belt models with the satellite internal charging models. We have developed prototype products for both types of charging/electrostatic discharge (ESD). The development of SECURES and our achievements are introduced in this paper.


Author(s):  
Yu Nakajima ◽  
Toru Yamamoto ◽  
Ryo Harada ◽  
Satoko Kawakami ◽  
Susumu Kumagai

2020 ◽  
Author(s):  
Tsutomu Nagatsuma ◽  
Aoi Nakamizo ◽  
Yasubumi Kubota ◽  
Masao Nakamura ◽  
Kiyokazu Koga ◽  
...  

Abstract Plasma variations in the geospace environment driven by the solar wind–magnetosphere interaction are one of the major causes of satellite anomaly. To mitigate the effect of satellite anomaly, the risk of space weather disturbances predicted by space weather forecasting needs to be known in advance. However, the risk of satellite anomaly owing to space weather disturbances is not the same for all satellites, because the risk depends not only on the space environment itself but also on the design and materials of individual satellites. From the viewpoint of satellite operators, it is difficult to apply a general alert level of the space environment to the risk of individual satellites. To provide tailored space weather information, we have developed SECURES (Space Environment Customized Risk Estimation for Satellites) by combining models of the space environment and those of spacecraft charging. In SECURES, we focus on the risk of spacecraft charging (surface/internal) for geosynchronous satellites. For the risk estimation of surface charging, we have combined the global magnetosphere magnetohydrodynamics (MHD) model with the satellite surface charging models. For the risk estimation of internal charging, we have combined the radiation belt models with the satellite internal charging models. We have developed prototype products for both types of charging/electrostatic discharge (ESD). The development of SECURES and our achievements are introduced in this paper.


2020 ◽  
Author(s):  
Tsutomu Nagatsuma ◽  
Aoi Nakamizo ◽  
Yasubumi Kubota ◽  
Masao Nakamura ◽  
Kiyokazu Koga ◽  
...  

Abstract Plasma variations in geospace environment driven by the solar wind-magnetosphere interaction is one of the major causes of satellite anomaly. To mitigate the effect of satellite anomaly, risk of space weather disturbances needs to be known in advance based on space weather forecast. However, risk of satellite anomaly due to space weather disturbances is not the same as each satellite, because the risk depends not only on the space environment itself but also on the design and materials of individual satellite. For the viewpoint of satellite operator, it is not easy to apply general alert level of space environment to the risk of individual satellite. To provide tailored space weather information, we have developed SECURES (Space Environment Customized Risk Estimation for Satellite) by combining models of space environment and those of spacecraft charging. In SECURES, we are focusing on the risk of spacecraft charging (surface/internal) for geosynchronous satellites. For risk estimation of surface charging, we have combined the global magnetosphere MHD model with the satellite surface charging models. For risk estimation of internal charging, we have combined the radiation belt models with the satellite internal charging models. We have developed prototype products for both types of charging/ESD. The development of SECURES and our achievements are introduced in this paper.


Sign in / Sign up

Export Citation Format

Share Document