spike gene
Recently Published Documents


TOTAL DOCUMENTS

217
(FIVE YEARS 167)

H-INDEX

24
(FIVE YEARS 7)

PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0261014
Author(s):  
Carlos Arana ◽  
Chaoying Liang ◽  
Matthew Brock ◽  
Bo Zhang ◽  
Jinchun Zhou ◽  
...  

High viral transmission in the COVID-19 pandemic has enabled SARS‐CoV‐2 to acquire new mutations that may impact genome sequencing methods. The ARTIC.v3 primer pool that amplifies short amplicons in a multiplex-PCR reaction is one of the most widely used methods for sequencing the SARS-CoV-2 genome. We observed that some genomic intervals are poorly captured with ARTIC primers. To improve the genomic coverage and variant detection across these intervals, we designed long amplicon primers and evaluated the performance of a short (ARTIC) plus long amplicon (MRL) sequencing approach. Sequencing assays were optimized on VR-1986D-ATCC RNA followed by sequencing of nasopharyngeal swab specimens from fifteen COVID-19 positive patients. ARTIC data covered 94.47% of the virus genome fraction in the positive control and patient samples. Variant analysis in the ARTIC data detected 217 mutations, including 209 single nucleotide variants (SNVs) and eight insertions & deletions. On the other hand, long-amplicon data detected 156 mutations, of which 80% were concordant with ARTIC data. Combined analysis of ARTIC + MRL data improved the genomic coverage to 97.03% and identified 214 high confidence mutations. The combined final set of 214 mutations included 203 SNVs, 8 deletions and 3 insertions. Analysis showed 26 SARS-CoV-2 lineage defining mutations including 4 known variants of concern K417N, E484K, N501Y, P618H in spike gene. Hybrid analysis identified 7 nonsynonymous and 5 synonymous mutations across the genome that were either ambiguous or not called in ARTIC data. For example, G172V mutation in the ORF3a protein and A2A mutation in Membrane protein were missed by the ARTIC assay. Thus, we show that while the short amplicon (ARTIC) assay provides good genomic coverage with high throughput, complementation of poorly captured intervals with long amplicon data can significantly improve SARS-CoV-2 genomic coverage and variant detection.


2022 ◽  
Vol 8 ◽  
Author(s):  
Ephraim Fass ◽  
Gal Zizelski Valenci ◽  
Mor Rubinstein ◽  
Paul J. Freidlin ◽  
Shira Rosencwaig ◽  
...  

The changing nature of the SARS-CoV-2 pandemic poses unprecedented challenges to the world's health systems. Emerging spike gene variants jeopardize global efforts to produce immunity and reduce morbidity and mortality. These challenges require effective real-time genomic surveillance solutions that the medical community can quickly adopt. The SARS-CoV-2 spike protein mediates host receptor recognition and entry into the cell and is susceptible to generation of variants with increased transmissibility and pathogenicity. The spike protein is the primary target of neutralizing antibodies in COVID-19 patients and the most common antigen for induction of effective vaccine immunity. Tight monitoring of spike protein gene variants is key to mitigating COVID-19 spread and generation of vaccine escape mutants. Currently, SARS-CoV-2 sequencing methods are labor intensive and expensive. When sequence demands are high sequencing resources are quickly exhausted. Consequently, most SARS-CoV-2 strains are sequenced in only a few developed countries and rarely in developing regions. This poses the risk that undetected, dangerous variants will emerge. In this work, we present HiSpike, a method for high-throughput cost effective targeted next generation sequencing of the spike gene. This simple three-step method can be completed in < 30 h, can sequence 10-fold more samples compared to conventional methods and at a fraction of their cost. HiSpike has been validated in Israel, and has identified multiple spike variants from real-time field samples including Alpha, Beta, Delta and the emerging Omicron variants. HiSpike provides affordable sequencing options to help laboratories conserve resources for widespread high-throughput, near real-time monitoring of spike gene variants.


2022 ◽  
Vol 44 (1) ◽  
pp. 329-335
Author(s):  
Panagiotis Halvatsiotis ◽  
Sofia Vassiliu ◽  
Panagiotis Koulouvaris ◽  
Kalliopi Chatzantonaki ◽  
Konstantinos Asonitis ◽  
...  

The aim of this study is to investigate the circulating variants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) from Athens and from rural areas in Greece during July and August 2021. We also present a rapid review of literature regarding significant SARS-CoV-2 mutations and their impact on public health. A total of 2500 nasopharyngeal swab specimens were collected from suspected COVID-19 cases (definition by WHO 2021b). Viral nucleic acid extraction was implemented using an automatic extractor and the RNA recovered underwent qRT-PCR in order to characterize the specimens as positive or negative for SARS-CoV-2. The positive specimens were then used to identify specific Spike gene mutations and characterize the emerging SARS-CoV-2 variants. For this step, various kits were utilized. From the 2500 clinical specimens, 220 were tested positive for SARS-CoV-2 indicating a prevalence of 8.8% among suspected cases. The RT-PCR Ct (Cycle threshold) Value ranged from 19 to 25 which corresponds to medium to high copy numbers of the virus in the positive samples. From the 220 positive specimens 148 (67.3%) were from Athens and 72 (32.7%) from Greek rural areas. As far as the Spike mutations investigated: N501Y appeared in all the samples, D614G mutation appeared in 212 (96.4%) samples with a prevalence of 87.2% in Athens and 98.6% in the countryside, E484K had a prevalence of 10.8% and 12.5% in Athens and the rural areas, respectively. K417N was found in 18 (12.2%) samples from Athens and four (5.6%) from the countryside, P681H was present in 51 (34.5%) Athenian specimens and 14 (19.4%) specimens from rural areas, HV69-70 was carried in 32.4% and 19.4% of the samples from Athens and the countryside, respectively. P681R had a prevalence of 87.2% in Athens and 98.6% in rural areas, and none of the specimens carried the L452R mutation. 62 (28.2%) samples carried the N501Y, P681H, D614G and HV69-70 mutations simultaneously and the corresponding variant was characterized as the Alpha (UK) variant (B 1.1.7). Only six (2.7%) samples from the center of Athens had the N501Y, E484K, K417N and D614G mutations simultaneously and the virus responsible was characterized as the Beta (South African) variant (B 1.351). Our study explored the SARS-CoV-2 variants using RT-PCR in a representative cohort of samples collected from Greece in July and August 2021. The prevalent mutations identified were N501Y (100%), D614G (96.4%), P681R (90.1%) and the variants identified were the Delta (90.1%), Alpha (28.2%) and Beta (2.7%).


2022 ◽  
Author(s):  
Hung Fu Tseng ◽  
Bradley K Ackerson ◽  
Yi Luo ◽  
Lina S Sy ◽  
Carla Talarico ◽  
...  

Background The recently emerged SARS-CoV-2 omicron variant raised concerns around potential escape from vaccine-elicited immunity. Limited data are available on real-world vaccine effectiveness (VE) of mRNA-1273 against omicron. Here, we report VE of 2 or 3 mRNA-1273 doses against infection and hospitalization with omicron and delta, including among immunocompromised individuals. Methods This test negative study was conducted at Kaiser Permanente Southern California. Cases were individuals aged ≥18 years testing positive by RT-PCR with specimens collected between 12/6/2021 and 12/23/2021 with variant determined by spike gene status. Randomly sampled test negative controls were 5:1 matched to cases by age, sex, race/ethnicity, and specimen collection date. Conditional logistic regression models were used to evaluate adjusted odds ratio (aOR) of vaccination with mRNA-1273 doses between cases and controls. VE(%) was calculated as (1-aOR)x100. Results 6657 test positive cases (44% delta, 56% omicron) were included. The 2-dose VE against omicron infection was 30.4% (95% CI, 5.0%-49.0%) at 14-90 days after vaccination and declined quickly thereafter. The 3-dose VE was 95.2% (93.4%-96.4%) against delta infection and 62.5% (56.2%-67.9%) against omicron infection. The 3-dose VE against omicron infection was low among immunocompromised individuals (11.5%; 0.0%-66.5%). None of the cases (delta or omicron) vaccinated with 3 doses were hospitalized compared to 53 delta and 2 omicron unvaccinated cases. Conclusions VE of 3 mRNA-1273 doses against infection with delta was high and durable, but VE against omicron infection was lower. VE against omicron infection was particularly low among immunocompromised individuals. No 3-dose recipients were hospitalized for COVID-19.


2022 ◽  
Vol 8 ◽  
Author(s):  
Li-Teh Liu ◽  
Jih-Jin Tsai ◽  
Chun-Hong Chen ◽  
Ping-Chang Lin ◽  
Ching-Yi Tsai ◽  
...  

Coronavirus disease 2019 (COVID-19) is an emerging life-threatening pulmonary disease caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which originated in Wuhan, Hubei Province, China, in December 2019. COVID-19 develops after close contact via inhalation of respiratory droplets containing SARS-CoV-2 during talking, coughing, or sneezing by asymptomatic, presymptomatic, and symptomatic carriers. This virus evolved over time, and numerous genetic variants have been reported to have increased disease severity, mortality, and transmissibility. Variants have also developed resistance to antivirals and vaccination and can escape the immune response of humans. Reverse transcription polymerase chain reaction (RT–PCR) is the method of choice among diagnostic techniques, including nucleic acid amplification tests (NAATs), serological tests, and diagnostic imaging, such as computed tomography (CT). The limitation of RT–PCR is that it cannot distinguish fragmented RNA genomes from live transmissible viruses. Thus, SARS-CoV-2 isolation by using cell culture has been developed and makes important contributions in the field of diagnosis, development of antivirals, vaccines, and SARS-CoV-2 virology research. In this research, two SARS-CoV-2 strains were isolated from four RT–PCR-positive nasopharyngeal swabs using VERO E6 cell culture. One isolate was cultured successfully with a blind passage on day 3 post inoculation from a swab with a Ct > 35, while the cells did not develop cytopathic effects without a blind passage until day 14 post inoculation. Our results indicated that infectious SARS-CoV-2 virus particles existed, even with a Ct > 35. Cultivable viruses could provide additional consideration for releasing the patient from quarantine. The results of the whole genome sequencing and bioinformatic analysis suggested that these two isolates contain a spike 68-76del+spike 675-679del double-deletion variation. The double deletion was confirmed by amplification of the regions spanning the spike gene deletion using Sanger sequencing. Phylogenetic analysis revealed that this double-deletion variant was rare (one per million in public databases, including GenBank and GISAID). The impact of this double deletion in the spike gene on the SARS-CoV-2 virus itself as well as on cultured cells and/or humans remains to be further elucidated.


2022 ◽  
Author(s):  
Wentai Ma ◽  
Jing Yang ◽  
Haoyi Fu ◽  
Chao Su ◽  
Caixia Yu ◽  
...  

A new variant of concern for SARS-CoV-2, Omicron (B.1.1.529), was designated by the World Health Organization on November 26, 2021. This study analyzed the viral genome sequencing data of 108 samples collected from patients infected with Omicron. First, we found that the enrichment efficiency of viral nucleic acids was reduced due to mutations in the region where the primers anneal to. Second, the Omicron variant possesses an excessive number of mutations compared to other variants circulating at the same time (62 vs. 45), especially in the Spike gene. Mutations in the Spike gene confer alterations in 32 amino acid residues, which was more than those observed in other SARS-CoV-2 variants. Moreover, a large number of nonsynonymous mutations occur in the codons for the amino acid residues located on the surface of the Spike protein, which could potentially affect the replication, infectivity, and antigenicity of SARS-CoV-2. Third, there are 53 mutations between the Omicron variant and its closest sequences available in public databases. Many of those mutations were rarely observed in the public database and had a low mutation rate. In addition, the linkage disequilibrium between these mutations was low, with a limited number of mutations (6) concurrently observed in the same genome, suggesting that the Omicron variant would be in a different evolutionary branch from the currently prevalent variants. To improve our ability to detect and track the source of new variants rapidly, it is imperative to further strengthen genomic surveillance and data sharing globally in a timely manner.


2022 ◽  
Author(s):  
Pragya D Yadav ◽  
Nivedita Gupta ◽  
Varsha Potdar ◽  
Sreelekshmy Mohandas ◽  
Rima R Sahay ◽  
...  

Due to failure of virus isolation of Omicron variant in Vero CCL-81 from the clinical specimens of COVID-19 cases, we infected Syrian hamsters and then passage into Vero CCL-81 cells. The Omicron sequences were studied to assess if hamster could incorporate any mutation to changes its susceptibility. L212C mutation, Tyrosine 69 deletion, and C25000T nucleotide change in spike gene and absence of V17I mutation in E gene was observed in sequences of hamster passage unlike human clinical specimen and Vero CCL-81 passages. No change was observed in the furin cleavage site in any of the specimen sequence which suggests usefulness of these isolates in future studies.


2021 ◽  
Vol 9 (12) ◽  
pp. 108-132
Author(s):  
Jean Claude Perez ◽  
Valère Lounnas ◽  
Montagnier Montagnier

We analyze here 7 very first strains of OMICRON the SARS-CoV2 new variant from South Africa, the USA (California and Minesota), Canada and Belgium. We applied, at the scale of the whole genome and the spike gene, the biomathematics method of Fibonacci meta-structure fractal analysis applied to the UA / CG proportions.  We have evidenced the RUPTURE of OMICRON with respect to ALL the previous variants: D614G, ALPHA, BETA, GAMMA, DELTA. Remarkably, it is observed that the density of OMICRON mutations in the SPIKE PRION region is more than 8 times that of the rest of the Spike protein. In particular, we suggest that the mRNA stabilizing secondary structure ("hairpin" conformation) in the spike of all variants is degraded in OMICRON, probably making its mRNA more fragile. The loss of long-range fractal meta-structures in the OMICRON spike gene are in line with common knowledge on the mechanisms of epidemic ending, involving  recombination of heavily mutated RNA fragments of the virus, with the possible inference of a distinct helper virus. This would indicate that the SARS-CoV2 is under very strong evolutionary pressure,  possibly marking the end of the pandemic. We are studying more particularly the prion-like region of the spike, the mutations rate of which is 8 times higher in OMICRON than that of the whole spike protein.


2021 ◽  
Author(s):  
Nicholas Jacob Barasch ◽  
James Iqbal ◽  
Marvin Coombs ◽  
Sofia Kazi ◽  
Jessica Wang-Rodriguez ◽  
...  

The emergence of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant (B.1.1.529), creates a diagnostic vacuum, since differentiation of Omicron from Delta relies on relatively slow next generation sequencing (NGS) technology delaying epidemiologic understanding and therapeutic intervention. The RUO SARS-CoV-2 Variant Set 1 Test (RSCov2V1) RT-PCR for detection of spike gene N501Y, E484K and del69-70 was designed to differentiate Alpha from Beta and Gamma variants. While Delta lacks these three variants, Omicron has the N501Y and del69-70 mutation. We submitted 88 samples for RSCov2V1 identifying 9 samples with the N501Y and del69-70 mutations while all other samples (79) were negative for all three variants. 9/9 samples with the del69-70 and N501Y were identified by NGS to be Omicron while 47/47 other samples assessed by NGS were confirmed to be Delta family variants. We demonstrate here that an immediately available RT-PCR assay for detection of spike gene N501Y and del69-70 can be utilized to rapidly differentiate Omicron from Delta variants in the proper epidemiologic context


2021 ◽  
Author(s):  
Sabrina Lusvarghi ◽  
Simon D. Pollett ◽  
Sabari Nath Neerukonda ◽  
WEI WANG ◽  
Richard Wang ◽  
...  

The rapid spread of the highly contagious Omicron variant of SARS-CoV-2 along with its high number of mutations in the spike gene has raised alarm about the effectiveness of current medical countermeasures. To address this concern, we measured neutralizing antibodies against Omicron in three important settings: (1) post-vaccination sera after two and three immunizations with the Pfizer/BNT162b2 vaccine, (2) convalescent sera from unvaccinated individuals infected by different variants, and (3) clinical-stage therapeutic antibodies. Using a pseudovirus neutralization assay, we found that titers against Omicron were low or undetectable after two immunizations and in most convalescent sera. A booster vaccination significantly increased titers against Omicron to levels comparable to those seen against the ancestral (D614G) variant after two immunizations. Neither age nor sex were associated with differences in post-vaccination antibody responses. Only three of 24 therapeutic antibodies tested retained their full potency against Omicron and high-level resistance was seen against fifteen. These findings underscore the potential benefit of booster mRNA vaccines for protection against Omicron and the need for additional therapeutic antibodies that are more robust to highly mutated variants.


Sign in / Sign up

Export Citation Format

Share Document