photosystem ii efficiency
Recently Published Documents


TOTAL DOCUMENTS

69
(FIVE YEARS 16)

H-INDEX

18
(FIVE YEARS 2)

2021 ◽  
Vol 118 (33) ◽  
pp. e2107425118
Author(s):  
Kevin M. Hines ◽  
Vishalsingh Chaudhari ◽  
Kristen N. Edgeworth ◽  
Thomas G. Owens ◽  
Maureen R. Hanson

The enzyme carbonic anhydrase (CA), which catalyzes the interconversion of bicarbonate with carbon dioxide (CO2) and water, has been hypothesized to play a role in C3 photosynthesis. We identified two tobacco stromal CAs, β-CA1 and β-CA5, and produced CRISPR/Cas9 mutants affecting their encoding genes. While single knockout lines Δβ-ca1 and Δβ-ca5 had no striking phenotypic differences compared to wild type (WT) plants, Δβ-ca1ca5 leaves developed abnormally and exhibited large necrotic lesions even when supplied with sucrose. Leaf development of Δβ-ca1ca5 plants normalized at 9,000 ppm CO2. Leaves of Δβ-ca1ca5 mutants and WT that had matured in high CO2 had identical CO2 fixation rates and photosystem II efficiency. Fatty acids, which are formed through reactions with bicarbonate substrates, exhibited abnormal profiles in the chloroplast CA-less mutant. Emerging Δβ-ca1ca5 leaves produce reactive oxygen species in chloroplasts, perhaps due to lower nonphotochemical quenching efficiency compared to WT. Δβ-ca1ca5 seedling germination and development is negatively affected at ambient CO2. Transgenes expressing full-length β-CA1 and β-CA5 proteins complemented the Δβ-ca1ca5 mutation but inactivated (ΔZn-βCA1) and cytoplasm-localized (Δ62-βCA1) forms of β-CA1 did not reverse the growth phenotype. Nevertheless, expression of the inactivated ΔZn-βCA1 protein was able to restore the hypersensitive response to tobacco mosaic virus, while Δβ-ca1 and Δβ-ca1ca5 plants failed to show a hypersensitive response. We conclude that stromal CA plays a role in plant development, likely through providing bicarbonate for biosynthetic reactions, but stromal CA is not needed for maximal rates of photosynthesis in the C3 plant tobacco.


2021 ◽  
Author(s):  
Henry A. Cordoba-Novoa ◽  
María Mercedez Pérez Trujillo ◽  
Brahyam Emmanuel Cruz Rincon ◽  
Nixon Florez Velazco ◽  
Stanislav Magnitskiy ◽  
...  

Strawberry (Fragaria × ananassa Duch.) is a commercially important crop with high water requirements, for which it is necessary to find strategies that mitigate the influence of water deficit on plant growth. This study was aimed to evaluate the effects of shading on the vegetative growth of strawberry cv. Sweet Ann under water deficit. The treatments consisted of the combination of two levels of shading (light intensity reduced on 47% vs. non-shaded plants) and two levels of water availability (water deficit vs. well-watered plants). The water deficit reduced the leaf water potential from -1.52 to -2.21 MPa, and diminished stomatal conductance, net photosynthetic rate (from 9.13 to 2.5 μmol m-2 s-1), photosystem II photochemical efficiency (from 0.79 to 0.67), and biomass accumulation, while increased the electrolyte leakage. The shading allowed the water-deficient plants to maintain water potential (-1.58 MPa) and photosystem II efficiency (0.79) and to increase water use efficiency (from 14.80 to 86.90 μmol CO2/mmol H2O), net photosynthetic rate (from 2.40 to 9.40 μmol m-2 s-1) and biomass of leaves, crowns, and roots compared to non-shaded plants without water limitation. These results suggest that a reduction in incident light intensity attenuates the effects of stomatic and non-stomatic limitations caused by water deficit during vegetative growth of strawberry.


2021 ◽  
Author(s):  
Li Xu ◽  
Chao Liu ◽  
Changpeng Xin ◽  
Wenqing Wang

Abstract Background: Mangrove environments are often characterized by large fluctuations in salinity, ranging from freshwater to hypersaline conditions. Most reports have focused on the mechanisms by which mangroves adapt to high salinity. However, how mangroves cope with seasonal freshwater habitats has seldom been studied. To address this question, we surveyed the river salinity and leaf traits (chlorophyll fluorescence, ion concentrations, carbon isotope ratios and osmolality) of Aegiceras corniculatum (L.) Blanco (river mangrove) along a freshwater-dominated river.Results: Aegiceras corniculatum at the upstream site was subjected to low salinity, being in fresh water for a long period (up to 310 h) in the wet season and experiencing a short term of low salinity in the dry season. The actual photosystem II efficiency (ФPSII) and electron transport rates (ETR) of the leaves at the upstream site decreased in the wet season, and recovered substantially in the dry season. Quenching analysis indicated that there was only a down-regulation of photoprotection, but no photoinhibition at the upstream site in the wet season. An explanation for this is that high levels of Na+ and Cl- were maintained in the leaves in the wet season.Conclusions: Long-term freshwater is a stressful environment for A. corniculatum. Aegiceras corniculatum maintains certain level Na+ and Cl- to adapt the seasonal freshwater.


2021 ◽  
Vol 12 ◽  
Author(s):  
Natalie Hoecker ◽  
Yvonne Hennecke ◽  
Simon Schrott ◽  
Giada Marino ◽  
Sidsel Birkelund Schmidt ◽  
...  

The protein family 0016 (UPF0016) is conserved through evolution, and the few members characterized share a function in Mn2+ transport. So far, little is known about the history of these proteins in Eukaryotes. In Arabidopsis thaliana five such proteins, comprising four different subcellular localizations including chloroplasts, have been described, whereas non-photosynthetic Eukaryotes have only one. We used a phylogenetic approach to classify the eukaryotic proteins into two subgroups and performed gene-replacement studies to investigate UPF0016 genes of various origins. Replaceability can be scored readily in the Arabidopsis UPF0016 transporter mutant pam71, which exhibits a functional deficiency in photosystem II. The N-terminal region of the Arabidopsis PAM71 was used to direct selected proteins to chloroplast membranes. Transgenic pam71 lines overexpressing the closest plant homolog (CMT1), human TMEM165 or cyanobacterial MNX successfully restored photosystem II efficiency, manganese binding to photosystem II complexes and consequently plant growth rate and biomass production. Thus AtCMT1, HsTMEM165, and SynMNX can operate in the thylakoid membrane and substitute for PAM71 in a non-native environment, indicating that the manganese transport function of UPF0016 proteins is an ancient feature of the family. We propose that the two chloroplast-localized UPF0016 proteins, CMT1 and PAM71, in plants originated from the cyanobacterial endosymbiont that gave rise to the organelle.


2021 ◽  
Author(s):  
Marcelo Pires Saraiva ◽  
Camille Ferreira Maia ◽  
Bruno Lemos Batista ◽  
Allan Klynger da Silva Lobato

Abstract Nickel (Ni) excess often generates oxidative stress in chloroplasts, causing redox imbalance, membrane damage and negative impacts on biomass. 24-Epibrassinolide (EBR) is a plant growth regulator of great interest in the scientific community because it is a natural molecule extracted from plants that is biodegradable and environmentally friendly. This study aimed to determine whether EBR can induce benefits on ionic homeostasis and antioxidant enzymes and convey possible repercussions on photosystem II efficiency and biomass, more specifically evaluating nutritional, physiological, biochemical and morphological responses in soybean plants subjected to Ni excess. The experiment was randomized with four treatments, including two Ni concentrations (0 and 200 µM Ni, described as – Ni2+ and + Ni2+, respectively) and two concentrations of 24-epibrassinolide (0 and 100 nM EBR, described as – EBR and + EBR, respectively). In general, Ni caused deleterious modulatory effects on chlorophyll fluorescence and gas exchange. In contrast, EBR enhanced the effective quantum yield of PSII photochemistry (15%) and electron transport rate (19%) due to upregulation of superoxide dismutase, catalase, ascorbate peroxidase and peroxidase. Exogenous EBR application promoted significant increases in biomass, and these results were explained by the benefits on nutrient contents and ionic homeostasis, demonstrated by increased Ca2+/Ni2+, Mg2+/Ni+ 2 and Mn2+/Ni2+ ratios.


Author(s):  
Hyo Gil Choi ◽  
Nam Jun Kang

The low relative humidity (RH) levels in a greenhouse during the daytime in a strawberry (Fragaria × ananassa Duch) cultivation period negatively affect the growth of strawberry related to photo-physiology. Therefore, this study was conducted to confirm an efficient RH management method by analyzing the phenotypic characteristics related to photo-physiology by controlling the RH in a greenhouse during the daytime with a fog system. Strawberry plants were grown respectively in a greenhouse affected by natural RH changes (control) and in a greenhouse with 40% ~ 50% RH adjusted during the daytime using a fog system. In the greenhouse, with controlled RH, the temperature decreased, and the RH was higher in the initial growth stage of strawberry planting than the control. It was observed a significant increase in the survival rate of the strawberry plant, as well as the incidence of powdery mildew, was lowered. In addition, the photosynthetic rate and OJIP chlorophyll a fluorescence transients related to photosystem II efficiency of strawberry leaves were significantly higher in the fog treatment than in the control. In winter, during the day, the number of days on which the temperature dropped below 20℃ has increased, the greenhouse temperature with controlled RH was lower due to the fog system. When the yield per strawberry plant in January and February was investigated, the control was higher than the RH treatment. Therefore, RH management using a fog system must be controlled at a level where a temperature range is adequate for plant growth, in which the efficient control of these parameters increases strawberry productivity.


Author(s):  
Martijn Slot ◽  
Daniela Cala ◽  
Jorge Aranda ◽  
Aurelio Virgo ◽  
Sean Michaletz ◽  
...  

Exceeding thermal thresholds causes irreversible damage and ultimately loss of leaves. The lowland tropics are among the warmest forested biomes, but little is known about heat tolerance of tropical forest species. We surveyed leaf heat tolerance of sun-exposed leaves from 147 tropical lowland and pre-montane forest species by determining the temperatures at which potential photosystem II efficiency based on chlorophyll a fluorescence started to decrease (T) and had decreased by 50% (T). T averaged 46.7°C (5–95 percentile: 43.5–49.7°C) and T averaged 49.9°C (47.8–52.5°C). Heat tolerance partially adjusted to site temperature; T and T decreased with elevation by 0.40°C and 0.26°C per 100m, respectively, while mean annual temperature decreased by 0.63°C per 100m. The phylogenetic signal in heat tolerance was weak, suggesting that heat tolerance is more strongly controlled by environment than by evolutionary legacies. T increased with the estimated thermal time constant of the leaves, indicating that species with thermally buffered leaves maintain higher heat tolerance. Among lowland species, T increased with leaf mass per area, so species with structurally more costly leaves reduce the risk of leaf loss during hot spells. These results provide insight in interspecific variation in heat tolerance at local and regional scales.


Toxins ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 711
Author(s):  
Maíra Mucci ◽  
Iame A. Guedes ◽  
Elisabeth J. Faassen ◽  
Miquel Lürling

Chitosan has been tested as a coagulant to remove cyanobacterial nuisance. While its coagulation efficiency is well studied, little is known about its effect on the viability of the cyanobacterial cells. This study aimed to test eight strains of the most frequent bloom-forming cyanobacterium, Microcystis aeruginosa, exposed to a realistic concentration range of chitosan used in lake restoration management (0 to 8 mg chitosan L−1). We found that after 1 h of contact with chitosan, in seven of the eight strains tested, photosystem II efficiency was decreased, and after 24 h, all the strains tested were affected. EC50 values varied from 0.47 to > 8 mg chitosan L-1 between the strains, which might be related to the amount of extracellular polymeric substances. Nucleic acid staining (Sytox-Green®) illustrated the loss of membrane integrity in all the strains tested, and subsequent leakage of pigments was observed, as well as the release of intracellular microcystin. Our results indicate that strain variability hampers generalization about species response to chitosan exposure. Hence, when used as a coagulant to manage cyanobacterial nuisance, chitosan should be first tested on the natural site-specific biota on cyanobacteria removal efficiency, as well as on cell integrity aspects.


Author(s):  
Yanbo Hu ◽  
Wei Xie ◽  
Baodong Chen

Abstract Background Water shortage can limit plant growth, which can be ameliorated by arbuscular mycorrhizal (AM) symbiosis through physiological and metabolic regulations. Deciphering which physiological and metabolic processes are central for AM-mediated regulations is essential for applications of mycorrhizal biotechnology in dryland agriculture. Methodology In this study, the influence of AM symbiosis on growth performance, photosynthesis, and organ accumulation of key C and N metabolites were assessed by growing maize (Mo17, Lancaster Sure Crop) seedlings inoculated with or without AM fungus (Rhizophagus irregularis Schenck & Smith BGC AH01) under different water regimes in greenhouse. Results Drought stress reduced shoot growth, while AM symbiosis significantly improved growth performances, with significant changes of photochemical processes and organ concentration of the key metabolites. AM symbiosis increased root levels of the metabolites in ornithine cycle and unsaturation of fatty acids regardless of water conditions. Root putrescine (Put) concentration was higher in AM than non-inoculated (NM) plants under well-watered conditions; the conversion of Put via diamine oxidase to γ-aminobutyric acid (GABA) occurred in roots of AM plants under drought stress. Leaf concentration of Put, the tricarboxylic acids, and soluble sugars significantly increased in AM plants under drought stress, showing higher values compared to that of NM plants. Moreover, photosystem II efficiency and chlorophyll concentration were higher in AM than NM plants regardless of water status. Conclusion Fatty acid- and ornithine cycle-related metabolites along with soluble sugars, Put, and GABA were the key metabolites of AM-mediated regulations in response to drought stress.


2020 ◽  
Vol 104 (3) ◽  
pp. 839-855
Author(s):  
John N. Ferguson ◽  
Lorna McAusland ◽  
Kellie E. Smith ◽  
Adam H. Price ◽  
Zoe A. Wilson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document