filter bandwidth
Recently Published Documents


TOTAL DOCUMENTS

116
(FIVE YEARS 18)

H-INDEX

9
(FIVE YEARS 3)

Author(s):  
Chen Liu ◽  
Minghua Li ◽  
Bangtao Chen ◽  
Ying Zhang ◽  
Yao Zhu ◽  
...  

Abstract ScxAl1-xN is a promising piezoelectric material for radio frequency communication applications with excellent electro-acoustic properties. However, the growth of abnormally oriented grains is widely observed in the Sc doped AlN films deposited by sputtering. In this work, for the first time, the impact of the abnormal grains in the Sc0.15Al0.85N films on the performance of bulk acoustic wave resonators and filters is systematically evaluated by both simulations and measurements. The correlation between the device performance and the abnormal grain parameters, including the density, dimension, crystal orientation, growth height, and the total volume of the abnormal grains, is evaluated and quantified. Simulation results show that the total volume of all abnormal grains in the whole device is the most critical factor among the parameters. Abnormal grains with randomly distributed parameters and around 6% total volume of the film can degrade the effective coupling coefficient of the resonator from 13.6% to 11%, leading to a 10.6% decrement of the filter bandwidth. Wafer-level device characterizations and measurements are performed, and the results are consistent with the simulations. This study provides a practical method for predicting the performance of the resonators and filters with abnormal grains, and a guideline for film quality evaluation.


2021 ◽  
Vol 19 ◽  
pp. 117-126
Author(s):  
Jonas F. Tiede ◽  
Thomas F. Eibert

Abstract. Distributed bandpass or band-reject filters generally become larger as the design center frequency decreases. To achieve suitable filters with small dimensions even at center frequencies below 2 GHz, ceramic resonators can be used. These components essentially represent transmission lines with a specified, potentially large permittivity, making them physically short while maintaining a desired electrical length. In this paper, Chebyshev-approximated band-reject filters using capacitors and transmission lines, the latter being represented by ceramic resonators, are investigated. Three filter prototypes are built and their performance is evaluated by measurements. Reasonable bandstop filter properties are found, which are the better the narrower the filter bandwidth is.


2021 ◽  
Vol 2127 (1) ◽  
pp. 012033
Author(s):  
G V Kulak ◽  
P I Ropot ◽  
O V Shakin

Abstract The features of collinear acousto - optical filtration of quasi - diffractive Bessel light beams of o- and e-type in uniaxial crystals are investigated. Using the method of overlap integrals, an expression is found for the diffraction efficiency depending on the parameters of the acousto-optical interaction, as well as on the values of the overlap integrals. It is shown that for the zero-order mode of a Bessel light beam for a lithium niobate crystal under conditions of transverse phase synchronism and in the optical spectrum range of 0.4-0.7 μm, the filter bandwidth of ∼0.2 nm is achievable; with an increase in the order of the mode m≥1, the increase in the bandwidth is insignificant and is ∼0.23 -0.24 nm.


2021 ◽  
Vol 2015 (1) ◽  
pp. 012109
Author(s):  
N I Petrov

Abstract The influence of plasmonic nanoparticles embedded in the central and side layers of the frustrated total internal reflection filter on the resonant transmission of light is analyzed. It is shown that the frequency dispersion causes the splitting of the filter bandwidth and the angular splitting of the incident beam into several output beams.


2021 ◽  
Author(s):  
Russell Kurtz

<p>Detecting and recognizing pulses is a critical task, in fields as widely separated as telecommunications, lidar, and target illumination. In all cases, the signal-to-noise ratio (SNR) is a key parameter that can be used to determine both the potential rate of errors and the probability of correct detection. In this paper the relationship among pulse width, amplifier bandwidth, and SNR is determined through modeling four approximations to pulse shapes and four amplifier lowpass filter configurations. The analysis determined that, given a specific filter and pulse shape, the bandwidth that maximizes SNR is a constant divided by the pulse width. For example, if the pulse has a Gaussian shape and the amplifier incorporates a second-order Chebyshev lowpass filter, this constant is 0.3389. Applying this, if the pulse width is 20 ns the maximum SNR comes for a filter bandwidth of 16.95 MHz, while if the pulse width is 50 µs the SNR is maximized at a 6.778-kHz bandwidth. Passing the signal through a filter also distorts the signal shape; the temporal shift and pulse lengthening are also determined. The calculated values are offered as inputs to a potential trade space that includes SNR, pulse distortion by the filter, and cost.</p>


2021 ◽  
Author(s):  
Russell Kurtz

<p>Detecting and recognizing pulses is a critical task, in fields as widely separated as telecommunications, lidar, and target illumination. In all cases, the signal-to-noise ratio (SNR) is a key parameter that can be used to determine both the potential rate of errors and the probability of correct detection. In this paper the relationship among pulse width, amplifier bandwidth, and SNR is determined through modeling four approximations to pulse shapes and four amplifier lowpass filter configurations. The analysis determined that, given a specific filter and pulse shape, the bandwidth that maximizes SNR is a constant divided by the pulse width. For example, if the pulse has a Gaussian shape and the amplifier incorporates a second-order Chebyshev lowpass filter, this constant is 0.3389. Applying this, if the pulse width is 20 ns the maximum SNR comes for a filter bandwidth of 16.95 MHz, while if the pulse width is 50 µs the SNR is maximized at a 6.778-kHz bandwidth. Passing the signal through a filter also distorts the signal shape; the temporal shift and pulse lengthening are also determined. The calculated values are offered as inputs to a potential trade space that includes SNR, pulse distortion by the filter, and cost.</p>


2021 ◽  
Author(s):  
Jason Samaha ◽  
Michael X Cohen

Oscillatory neural dynamics are highly non-stationary and require methods capable of quantifying time-resolved changes in rhythmic activity in order to understand neural function. Recently, a method termed 'frequency sliding' was introduced to estimate the instantaneous frequency of oscillatory activity, providing a means of tracking temporal changes in the dominant frequency within a sub-band of field potential recordings. Here, the ability of frequency sliding to recover ground-truth oscillatory frequency in simulated data is tested while the exponent (slope) of the 1/fx component of the signal power spectrum is systematically varied, mimicking real electrophysiological data. The results show that 1) in the presence of 1/f activity, frequency sliding systematically underestimates the true frequency of the signal, 2) the magnitude of underestimation is correlated with the steepness of the slope, suggesting that, if unaccounted for, slope changes could be misinterpreted as frequency changes, 3) the impact of slope on frequency estimates interacts with oscillation amplitude, indicating that changes in oscillation amplitude alone may also influence instantaneous frequency estimates in the presence of strong 1/f activity; and 4) analysis parameters such as filter bandwidth and location also mediate the influence of slope on estimated frequency, indicating that these settings should be considered when interpreting estimates obtained via frequency sliding. The origin of these biases resides in the output of the filtering step of frequency sliding, whose energy is biased towards lower frequencies precisely because of the 1/f structure of the data. We discuss several strategies to mitigate these biases and provide a proof-of-principle for a 1/f normalization strategy.


2021 ◽  
Author(s):  
Wieslaw Kosek

&lt;p&gt;The frequency-dependent autocovariance (FDA) function is defined in this paper as the autocovariance function of a wideband oscillation filtered by the Fourier transform bandpass filter (FTBPF). It was shown that the FDA estimation is a useful algorithm to detect mean amplitudes of oscillations in a very noisy time series. In this paper the least-squares polynomial harmonic model was used to remove the trend, low frequency as well as the annual and semi-annual oscillations from the IERS eopc04R_IAU2000_daily length of day (LOD) time series to compute their residuals. Next, the mean amplitudes of the signal as a function of frequency were determined from the difference between the FDA of LOD residuals and FDA of power-law noise model similar to the noise present in LOD residuals.&amp;#160; Several power-law noise model data were generated with a similar spectral index and variance as the noise in LOD data to estimate the mean amplitude spectrum in the seasonal and shorter period frequency band. &amp;#160;It was shown that the mean amplitudes of the oscillations in LOD residuals are very small compared to the noise standard deviation and do not depend on the filter bandwidth of the FTBPF. These small amplitudes explain why LOD prediction errors increase rapidly with the prediction length.&lt;/p&gt;


Acta Acustica ◽  
2021 ◽  
Vol 5 ◽  
pp. 60
Author(s):  
Mathias Dietz ◽  
Jörg Encke ◽  
Kristin I Bracklo ◽  
Stephan D Ewert

Differences between the interaural phase of a noise and a target tone improve detection thresholds. The maximum masking release is obtained for detecting an antiphasic tone (Sπ) in diotic noise (N0). It has been shown in several studies that this benefit gradually declines as an interaural time delay (ITD) is applied to the noise. This decline has been attributed to the reduced interaural coherence of the noise. Here, we report detection thresholds for a 500 Hz tone in masking noise with ITDs up to 8 ms and bandwidths from 25 to 1000 Hz. Reducing the noise bandwidth from 100 to 50 and 25 Hz increased the masking release for 8-ms ITD, as expected for increasing temporal coherence with decreasing bandwidth. For bandwidths of 100–1000 Hz no significant difference in masking release was observed. Detection thresholds with these wider-band noises had an ITD dependence that is fully described by the temporal coherence imposed by the typical monaurally determined auditory-filter bandwidth. A binaural model based on interaural phase-difference fluctuations accounts for the data without using delay lines.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud M. A. Eid ◽  
Ahmed Nabih Zaki Rashed ◽  
Eman Mohsen El-gammal ◽  
Tahesin Samira Delwar ◽  
Jee Youl Ryu

AbstractThe work offered the analysis comparison study of optical wireless intersatellite link (ISL) for both different bit sequence generators and filters. The study clarifies the impact of varying sorts of both bit sequence generator (data source) in the transmitter and electrical filters in receiver on system performance. The two bit sequence generators used are pseudo random bit sequence generator (PRBSG) and user-defined bit sequence generator (UDBSG). The used filters in this study are low pass (LP) Bessel filter, LP Gaussian filter, LPCROF (cosine roll-off filter), and LPSCROF (squared CROF). Performance of the filter depends on the order of filter and filter bandwidth. The performance parameters in our study are quality factor, Bit Error Rate (BER), and optical received power. In this study, variation of optical received power depends on the type of sequence generator because it is measured after the channel directly.


Sign in / Sign up

Export Citation Format

Share Document