complex singularities
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 7)

H-INDEX

16
(FIVE YEARS 1)

2021 ◽  
Vol 932 ◽  
Author(s):  
R.E. Caflisch ◽  
F. Gargano ◽  
M. Sammartino ◽  
V. Sciacca

We study the evolution of a 2D vortex layer at high Reynolds number. Vortex layer flows are characterized by intense vorticity concentrated around a curve. In addition to their intrinsic interest, vortex layers are relevant configurations because they are regularizations of vortex sheets. In this paper, we consider vortex layers whose thickness is proportional to the square-root of the viscosity. We investigate the typical roll-up process, showing that crucial phases in the initial flow evolution are the formation of stagnation points and recirculation regions. Stretching and folding characterizes the following stage of the dynamics, and we relate these events to the growth of the palinstrophy. The formation of an inner vorticity core, with vorticity intensity growing to infinity for larger Reynolds number, is the final phase of the dynamics. We display the inner core's self-similar structure, with the scale factor depending on the Reynolds number. We reveal the presence of complex singularities in the solutions of Navier–Stokes equations; these singularities approach the real axis with increasing Reynolds number. The comparison between these singularities and the Birkhoff–Rott singularity seems to suggest that vortex layers, in the limit $Re\rightarrow \infty$ , behave differently from vortex sheets.


2021 ◽  
Vol 103 (11) ◽  
Author(s):  
Yui Hayashi ◽  
Kei-Ichi Kondo

2021 ◽  
Vol 10 (6) ◽  
Author(s):  
Michal P. Heller ◽  
Alexandre Serantes ◽  
Michal Spalinski ◽  
Viktor Svensson ◽  
Benjamin Withers

We study the mechanisms setting the radius of convergence of hydrodynamic dispersion relations in kinetic theory in the relaxation time approximation. This introduces a quali\-tatively new feature with respect to holography: a nonhydrodynamic sector represented by a branch cut in the retarded Green's function. In contrast with existing holographic examples, we find that the radius of convergence in the shear channel is set by a collision of the hydrodynamic pole with a branch point. In the sound channel it is set by a pole-pole collision on a non-principal sheet of the Green's function. More generally, we examine the consequences of the Implicit Function Theorem in hydrodynamics and give a prescription to determine a set of points that necessarily includes all complex singularities of the dispersion relation. This may be used as a practical tool to assist in determining the radius of convergence of hydrodynamic dispersion relations.


2021 ◽  
Vol 917 ◽  
Author(s):  
M.C. Dallaston ◽  
M.A. Fontelos ◽  
M.A. Herrada ◽  
J.M. Lopez-Herrera ◽  
J. Eggers

Abstract


2021 ◽  
pp. 309-359
Author(s):  
José Luis Cisneros-Molina ◽  
José Seade

2018 ◽  
Vol 856 ◽  
pp. 323-350 ◽  
Author(s):  
Thomas G. J. Chandler ◽  
Philippe H. Trinh

It is known that in steady-state potential flows, the separation of a gravity-driven free surface from a solid exhibits a number of peculiar characteristics. For example, it can be shown that the fluid must separate from the body so as to form one of three possible in-fluid angles: (i) $180^{\circ }$, (ii) $120^{\circ }$ or (iii) an angle such that the surface is locally perpendicular to the direction of gravity. These necessary separation conditions were notably remarked upon by Dagan & Tulin (J. Fluid Mech., vol. 51 (3), 1972, pp. 529–543) in the context of ship hydrodynamics, but they are of crucial importance in many potential-flow applications. It is not particularly well understood why there is such a drastic change in the local separation behaviours when the global flow is altered. The question that motivates this work is the following: outside of a formal balance-of-terms argument, why must cases (i)–(iii) occur and furthermore, what are the connections between them? In this work, we seek to explain the transitions between the three cases in terms of the singularity structure of the associated solutions once they are extended into the complex plane. A numerical scheme is presented for the analytic continuation of a vertical jet (or alternatively a rising bubble). It will be shown that the transition between the three cases can be predicted by observing the coalescence of singularities as the speed of the jet is modified. A scaling law is derived for the coalescence rate of singularities.


2018 ◽  
Vol 10 (03) ◽  
pp. 493-530
Author(s):  
Mark McLean

In this paper, we give partial answers to the following questions: Which contact manifolds are contactomorphic to links of isolated complex singularities? Which symplectic manifolds are symplectomorphic to smooth affine varieties? The invariant that we will use to distinguish such manifolds is called the growth rate of wrapped Floer cohomology. Using this invariant we show that if [Formula: see text] is a simply connected manifold whose unit cotangent bundle is contactomorphic to the link of an isolated singularity or whose cotangent bundle is symplectomorphic to a smooth affine variety then M must be rationally elliptic and so it must have certain bounds on its Betti numbers.


Sign in / Sign up

Export Citation Format

Share Document