fourier pseudospectral method
Recently Published Documents


TOTAL DOCUMENTS

61
(FIVE YEARS 12)

H-INDEX

15
(FIVE YEARS 2)

2021 ◽  
Vol 62 ◽  
pp. 256-273
Author(s):  
J. L. Yan ◽  
L. H. Zheng ◽  
L. Zhu ◽  
F. Q. Lu

We propose two linearly implicit energy-preserving schemes for the complex modified Korteweg–de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.   doi:10.1017/S1446181120000218


2020 ◽  
Vol 62 (3) ◽  
pp. 256-273
Author(s):  
J. L. YAN ◽  
L. H. ZHENG ◽  
L. ZHU ◽  
F. Q. LU

AbstractWe propose two linearly implicit energy-preserving schemes for the complex modified Korteweg–de Vries equation, based on the invariant energy quadratization method. First, a new variable is introduced and a new Hamiltonian system is constructed for this equation. Then the Fourier pseudospectral method is used for the space discretization and the Crank–Nicolson leap-frog schemes for the time discretization. The proposed schemes are linearly implicit, which is only needed to solve a linear system at each time step. The fully discrete schemes can be shown to conserve both mass and energy in the discrete setting. Some numerical examples are also presented to validate the effectiveness of the proposed schemes.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. T335-T345
Author(s):  
Enjiang Wang ◽  
José M. Carcione ◽  
Jing Ba ◽  
Mamdoh Alajmi ◽  
Ayman N. Qadrouh

We have applied the nearly perfectly matched layer (N-PML) absorber to the viscoelastic wave equation based on the Kelvin-Voigt and Zener constitutive equations. In the first case, the stress-strain relation has the advantage of not requiring additional physical field (memory) variables, whereas the Zener model is more adapted to describe the behavior of rocks subject to wave propagation in the whole frequency range. In both cases, eight N-PML artificial memory variables are required in the absorbing strips. The modeling simulates 2D waves by using two different approaches to compute the spatial derivatives, generating different artifacts from the boundaries, namely, 16th-order finite differences, where reflections from the boundaries are expected, and the staggered Fourier pseudospectral method, where wraparound occurs. The time stepping in both cases is a staggered second-order finite-difference scheme. Numerical experiments demonstrate that the N-PML has a similar performance as in the lossless case. Comparisons with other approaches (S-PML and C-PML) are carried out for several models, which indicate the advantages and drawbacks of the N-PML absorber in the anelastic case.


2019 ◽  
Vol 874 ◽  
pp. 339-358 ◽  
Author(s):  
Saeed Jafari Kang ◽  
Esmaeil Dehdashti ◽  
Vahid Vandadi ◽  
Hassan Masoud

We theoretically study small-amplitude oscillations of permeable cylinders immersed in an unbounded fluid. Specifically, we examine the effects of oscillation frequency, permeability and shape on the effective mass and damping coefficients, the latter of which is proportional to the power required to sustain the vibrations. Cylinders of circular and elliptical cross-sections undergoing transverse and rotational vibrations are considered. The dynamics of the fluid flow through porous cylinders is assumed to obey the unsteady Brinkman–Debye–Bueche equations. We use a singularity method to analytically calculate the flow field within and around circular cylinders, whereas we introduce a Fourier-pseudospectral method to numerically solve the governing equations for elliptical cylinders. We find that, if rescaled properly, the analytical results for circular cylinders provide very good estimates for the behaviour of elliptical ones over a wide range of conditions. More importantly, our calculations indicate that, at sufficiently high frequencies, the damping coefficient of oscillations varies non-monotonically with the permeability, in which case it maximizes when the diffusion length scale for the vorticity is comparable to the penetration length scale for the flow within the porous material. Depending on the oscillation period, the maximum damping of a permeable cylinder can be many times greater than that of an otherwise impermeable one. This might seem counter-intuitive at first, since generally the power it takes to steadily drag a permeable object through a fluid is less than the power needed to drive the steady motion of the same, but impermeable, object. However, the driving power (or damping coefficient) for oscillating bodies is determined not only by the amplitude of the cyclic fluid load experienced by them but also by the phase shift between the load and their periodic motion. An increase in the latter is responsible for the excess damping coefficient of vibrating porous cylinders.


Sign in / Sign up

Export Citation Format

Share Document