meiotic initiation
Recently Published Documents


TOTAL DOCUMENTS

54
(FIVE YEARS 25)

H-INDEX

14
(FIVE YEARS 2)

Development ◽  
2021 ◽  
Vol 148 (24) ◽  
Author(s):  
Jian Chen ◽  
Chenxu Gao ◽  
Xiwen Lin ◽  
Yan Ning ◽  
Wei He ◽  
...  

ABSTRACT Spermatogonial differentiation and meiotic initiation during spermatogenesis are tightly regulated by a number of genes, including those encoding enzymes for miRNA biogenesis. However, whether and how single miRNAs regulate these processes remain unclear. Here, we report that miR-202, a member of the let-7 family, prevents precocious spermatogonial differentiation and meiotic initiation in spermatogenesis by regulating the timely expression of many genes, including those for key regulators such as STRA8 and DMRT6. In miR-202 knockout (KO) mice, the undifferentiated spermatogonial pool is reduced, accompanied by age-dependent decline of fertility. In KO mice, SYCP3, STRA8 and DMRT6 are expressed earlier than in wild-type littermates, and Dmrt6 mRNA is a direct target of miR-202-5p. Moreover, the precocious spermatogonial differentiation and meiotic initiation were also observed in KO spermatogonial stem cells when cultured and induced in vitro, and could be partially rescued by the knockdown of Dmrt6. Therefore, we have not only shown that miR-202 is a regulator of meiotic initiation but also identified a previously unknown module in the underlying regulatory network.


2021 ◽  
Author(s):  
Longfei Ma ◽  
Dan Xie ◽  
Xiwen Lin ◽  
Hengyu Nie ◽  
Jian Chen ◽  
...  

The chromatin state undergoes global and dynamic changes during spermatogenesis, and is critical to chromosomal synapsis, meiotic recombination, and transcriptional regulation. However, the key regulators involved and the underlying molecular mechanisms remain poorly understood. Herein we report that mouse BEND2, one of the BEN-domain- containing proteins conserved in vertebrates, was specifically expressed in spermatogenic cells within a short time-window spanning meiotic initiation, and that it plays an essential role in the progression of prophase in meiosis I. Bend2 gene knockout in male mice arrested meiosis at the transition from zygonema to pachynema, disrupted synapsis and DNA double-strand break repair, and induced non-homologous chromosomal pairing. BEND2 interacted with a number of chromatin-associated proteins including ZMYM2, LSD1, CHD4, and ADNP,which are components of certain transcription-repressor complexes. BEND2-binding sites were identified in diverse chromatin states and enriched in simple sequence repeats. BEND2 contributed to shutting down the mitotic gene-expression program and to the activation of meiotic and post-meiotic gene expression, and it regulated chromatin accessibility as well as the modification of H3K4me3. Therefore, our study identified BEND2 as a novel and key regulator of meiosis, gene expression, and chromatin state during mouse spermatogenesis.


2021 ◽  
Author(s):  
Jian Chen ◽  
Chenxu Gao ◽  
Xiwen Lin ◽  
Yan Ning ◽  
Wei He ◽  
...  

Spermatogonial differentiation and meiotic initiation during spermatogenesis are tightly regulated by a number of genes including those coding enzymes for miRNA biogenesis. However, whether and how single miRNAs regulate these processes remain unclear. Here, we report that miR-202, a member of the let-7 family, prevents precocious spermatogonial differentiation and meiotic initiation in spermatogenesis by regulating the timely expression of many genes including those for other key regulators. In miR-202 knockout (KO) mice, the undifferentiated spermatogonial pool is reduced, ultimately causing agametic seminiferous tubules. SYCP3, STRA8 and DMRT6 are expressed earlier in KO mice than in wild-type (WT) littermates, and Dmrt6 mRNA is a direct target of miR-202-5p. Moreover, the precocious spermatogonial differentiation and meiotic initiation were also observed in KO spermatogonial stem cells when cultured and induced in vitro, and could be rescued by the knockdown of Dmrt6. Therefore, we have not only shown that miR-202 is a novel regulator of meiotic initiation but also added a new module to the underlying regulatory network.


Development ◽  
2021 ◽  
Vol 148 (9) ◽  
Author(s):  
Guihua Du ◽  
Melissa J. Oatley ◽  
Nathan C. Law ◽  
Colton Robbins ◽  
Xin Wu ◽  
...  

ABSTRACT The stem cell-containing undifferentiated spermatogonial population in mammals, which ensures continual sperm production, arises during development from prospermatogonial precursors. Although a period of quiescence is known to occur in prospermatogonia prior to postnatal spermatogonial transition, the importance of this has not been defined. Here, using mouse models with conditional knockout of the master cell cycle regulator Rb1 to disrupt normal timing of the quiescence period, we found that failure to initiate mitotic arrest during fetal development leads to prospermatogonial apoptosis and germline ablation. Outcomes of single-cell RNA-sequencing analysis indicate that oxidative phosphorylation activity and inhibition of meiotic initiation are disrupted in prospermatogonia that fail to enter quiescence on a normal timeline. Taken together, these findings suggest that key layers of programming are laid down during the quiescent period in prospermatogonia to ensure proper fate specification and fitness in postnatal life.


2021 ◽  
Vol 7 (15) ◽  
pp. eabc6747
Author(s):  
B. Soygur ◽  
R. G. Jaszczak ◽  
A. Fries ◽  
D. H. Nguyen ◽  
S. Malki ◽  
...  

Meiosis is critical to generating oocytes and ensuring female fertility; however, the mechanisms regulating the switch from mitotic primordial germ cells to meiotic germ cells are poorly understood. Here, we implicate intercellular bridges (ICBs) in this state transition. We used three-dimensional in toto imaging to map meiotic initiation in the mouse fetal ovary and revealed a radial geometry of this transition that precedes the established anterior-posterior wave. Our studies reveal that appropriate timing of meiotic entry across the ovary and coordination of mitotic-meiotic transition within a cyst depend on the ICB component Tex14, which we show is required for functional cytoplasmic sharing. We find that Tex14 mutants more rapidly attenuate the pluripotency transcript Dppa3 upon meiotic initiation, and Dppa3 mutants undergo premature meiosis similar to Tex14. Together, these results lead to a model that ICBs coordinate and buffer the transition from pluripotency to meiosis through dilution of regulatory factors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Xiaoyu Zhang ◽  
Sumedha Gunewardena ◽  
Ning Wang

AbstractThe molecular machinery and chromosome structures carrying out meiosis are frequently conserved from yeast to mammals. However, signals initiating meiosis appear divergent: while nutrient restriction induces meiosis in the yeast system, retinoic acid (RA) and its target Stra8 have been shown to be necessary but not sufficient to induce meiotic initiation in mammalian germ cells. Here, we use primary culture of mouse undifferentiated spermatogonia without the support of gonadal somatic cells to show that nutrient restriction in combination with RA is sufficient to induce Stra8- and Spo11-dependent meiotic gene and chromosome programs that recapitulate the transcriptomic and cytologic features of in vivo meiosis. We demonstrate that neither nutrient restriction nor RA alone exerts these effects. Moreover, we identify a distinctive network of 11 nutrient restriction-upregulated transcription factor genes, which are associated with early meiosis in vivo and whose expression does not require RA. Our study proposes a conserved model, in which nutrient restriction induces meiotic initiation by upregulating key transcription factor genes for the meiotic gene program and provides an in vitro platform for meiotic induction that could facilitate research and haploid gamete production.


Biomolecules ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 89
Author(s):  
Shinya Matsuda ◽  
Ushio Kikkawa ◽  
Akio Nakashima

Meiosis is a specialized cell division process that mediates genetic information transfer to the next generation. Meiotic chromosomal segregation occurs when DNA replication is completed during the pre-meiotic S phase. Here, we show that Schizosaccharomyces pombe Pef1, an orthologue of mammalian cyclin-dependent kinase 5 (CDK5), is required to promote pre-meiotic DNA replication. We examined the efficiency of meiotic initiation using pat1-114 mutants and found that, meiotic nuclear divisions did not occur in the pef1Δ pat1-114 strain. Deletion of pef1 also suppressed the expression of DNA replication factors and the phosphorylation of Cdc2 Tyr-15. The double deletion of clg1 and psl1 arrested meiotic initiation in pat1-114 mutant cells, similar to that of pef1-deficient cells. Meiotic progression was also slightly delayed in the pas1-deficient strain. Our results reveal that Pef1 regulates cyclin-coordinated meiotic progression.


Gene ◽  
2020 ◽  
Vol 753 ◽  
pp. 144810
Author(s):  
Ming Zeng ◽  
Xin Dai ◽  
Zhibing Liang ◽  
Ruliang Sun ◽  
Sui Huang ◽  
...  

2020 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Sumedha Gunewardena ◽  
Ning Wang

Abstract From yeasts to mammals, the molecular machinery and chromosome structures carrying out meiosis are frequently conserved. However, the signal to initiate meiosis appears divergent: while nutrient restriction induces meiosis in the yeast system, retinoic acid (RA), a chordate morphogen, and its target, Stra8, are necessary but not sufficient to induce meiotic initiation in mammalian germ cells. Here, by using a combination of genetic, transcriptomic, cytologic approaches in mouse primary spermatogonial culture without the support of gonadal somatic cells, we show that nutrient restriction is both necessary and sufficient to robustly induce Spo11-dependent meiotic DNA double strand breaks (DSBs) and Stra8-dependent meiotic gene programs with RA, recapitulating those of early meiosis in vivo. Moreover, distinct network of 11 nutrient restriction-upregulated transcription factor genes was identified, whose expression does not require RA and is associated with early meiosis in vivo. Thus, our study proposes a conserved model, in which nutrient restriction induces meiotic initiation by upregulating key transcriptional factors for meiotic gene programs, and provides an in vitro platform to recapitulate meiotic initiation that will facilitate research and haploid gamete production.


2020 ◽  
Author(s):  
Xiaoyu Zhang ◽  
Sumedha Gunewardena ◽  
Ning Wang

ABSTRACTFrom yeasts to mammals, the molecular machinery and chromosome structures carrying out meiosis are frequently conserved. However, the signal to initiate meiosis appears divergent: while nutrient restriction induces meiosis in the yeast system, retinoic acid (RA), a chordate morphogen, is necessary but not sufficient to induce meiotic initiation in mammalian germ cells via its target, Stra8. Here, using cultured mouse male germline stem cells without the support of gonadal somatic cells, we show that nutrient restriction in combination with RA robustly induces Spo11-dependent meiotic DNA double strand breaks (DSBs) and Stra8-dependent meiotic gene programs recapitulating those of early meiosis in vivo. Moreover, a distinct network of 11 nutrient restriction-upregulated transcription factor genes was identified, whose expression does not require RA and is associated with early meiosis in vivo. Thus, our study proposes a conserved model, in which nutrient restriction induces meiotic initiation by upregulating transcriptional factors for meiotic gene programs, and provides an in vitro platform to derive haploid gametes in culture.One Sentence Summarynutrient restriction synergizes with retinoic acid to induce mammalian meiotic initiation


Sign in / Sign up

Export Citation Format

Share Document