feature selectivity
Recently Published Documents


TOTAL DOCUMENTS

101
(FIVE YEARS 31)

H-INDEX

24
(FIVE YEARS 2)

2021 ◽  
Vol 118 (50) ◽  
pp. e2103702118
Author(s):  
Jacob A. Westerberg ◽  
Elizabeth A. Sigworth ◽  
Jeffrey D. Schall ◽  
Alexander Maier

Visual search is a workhorse for investigating how attention interacts with processing of sensory information. Attentional selection has been linked to altered cortical sensory responses and feature preferences (i.e., tuning). However, attentional modulation of feature selectivity during search is largely unexplored. Here we map the spatiotemporal profile of feature selectivity during singleton search. Monkeys performed a search where a pop-out feature determined the target of attention. We recorded laminar neural responses from visual area V4. We first identified “feature columns” which showed preference for individual colors. In the unattended condition, feature columns were significantly more selective in superficial relative to middle and deep layers. Attending a stimulus increased selectivity in all layers but not equally. Feature selectivity increased most in the deep layers, leading to higher selectivity in extragranular layers as compared to the middle layer. This attention-induced enhancement was rhythmically gated in phase with the beta-band local field potential. Beta power dominated both extragranular laminar compartments, but current source density analysis pointed to an origin in superficial layers, specifically. While beta-band power was present regardless of attentional state, feature selectivity was only gated by beta in the attended condition. Neither the beta oscillation nor its gating of feature selectivity varied with microsaccade production. Importantly, beta modulation of neural activity predicted response times, suggesting a direct link between attentional gating and behavioral output. Together, these findings suggest beta-range synaptic activation in V4’s superficial layers rhythmically gates attentional enhancement of feature tuning in a way that affects the speed of attentional selection.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Runnan Cao ◽  
Xin Li ◽  
Nicholas J. Brandmeir ◽  
Shuo Wang

AbstractFaces are salient social stimuli that attract a stereotypical pattern of eye movement. The human amygdala and hippocampus are involved in various aspects of face processing; however, it remains unclear how they encode the content of fixations when viewing faces. To answer this question, we employed single-neuron recordings with simultaneous eye tracking when participants viewed natural face stimuli. We found a class of neurons in the human amygdala and hippocampus that encoded salient facial features such as the eyes and mouth. With a control experiment using non-face stimuli, we further showed that feature selectivity was specific to faces. We also found another population of neurons that differentiated saccades to the eyes vs. the mouth. Population decoding confirmed our results and further revealed the temporal dynamics of face feature coding. Interestingly, we found that the amygdala and hippocampus played different roles in encoding facial features. Lastly, we revealed two functional roles of feature-selective neurons: 1) they encoded the salient region for face recognition, and 2) they were related to perceived social trait judgments. Together, our results link eye movement with neural face processing and provide important mechanistic insights for human face perception.


2021 ◽  
Author(s):  
Sophia Wienbar ◽  
Gregory Schwartz

The output of spiking neurons depends both on their synaptic inputs and on their intrinsic properties. Retinal ganglion cells (RGCs), the spiking projection neurons of the retina, comprise over 40 different types in mice and other mammals, each tuned to different features of visual scenes. The circuits providing synaptic input to different RGC types to drive feature selectivity have been studied extensively, but there has been substantially less research aimed at understanding how the intrinsic properties of RGCs differ and how those differences impact feature selectivity. Here, we introduce an RGC type in the mouse, the Bursty Suppressed-by-Contrast (bSbC) RGC, whose contrast selectivity is shaped by its intrinsic properties. Surprisingly, when we compare the bSbC RGC to the OFF sustained alpha (OFFsA) RGC that receives similar synaptic input, we find that the two RGC types exhibit starkly different responses to an identical stimulus. We identified spike generation as the key intrinsic property behind this functional difference; the bSbC RGC undergoes depolarization block in conditions where the OFFsA RGC maintains a high spike rate. Pharmacological experiments, imaging, and compartment modeling demonstrate that these differences in spike generation are the result of differences in voltage-gated sodium channel conductances. Our results demonstrate that differences in intrinsic properties allow these two RGC types to detect and relay distinct features of an identical visual stimulus to the brain.


Cell Reports ◽  
2021 ◽  
Vol 37 (1) ◽  
pp. 109772
Author(s):  
Tomaso Muzzu ◽  
Aman B. Saleem

2021 ◽  
Author(s):  
Justin K O'Hare ◽  
Yusuke Hirabayashi ◽  
Victoria L Hewitt ◽  
Heike Blockus ◽  
Miklos Szoboszlay ◽  
...  

Dendritic Ca2+ signaling is central to neural plasticity mechanisms allowing animals to adapt to the environment. Intracellular Ca2+ release (ICR) from endoplasmic reticulum has long been thought to shape these mechanisms. However, ICR has not been investigated in mammalian neurons in vivo. We combined electroporation of single CA1 pyramidal neurons, simultaneous imaging of dendritic and somatic activity during spatial navigation, optogenetic place field induction, and acute genetic augmentation of ICR cytosolic impact to reveal that ICR supports the establishment of dendritic feature selectivity and shapes integrative properties determining output-level receptive fields. This role for ICR was more prominent in apical than in basal dendrites. Thus, ICR cooperates with circuit-level architecture in vivo to promote the emergence of behaviorally-relevant plasticity in a compartment-specific manner.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Pierre-Luc Rochon ◽  
Catherine Theriault ◽  
Aline Giselle Rangel Olguin ◽  
Arjun Krishnaswamy

Nearly 50 different mouse retinal ganglion cell (RGC) types sample the visual scene for distinct features. RGC feature selectivity arises from their synapses with a specific subset of amacrine (AC) and bipolar cell (BC) types, but how RGC dendrites arborize and collect input from these specific subsets remains poorly understood. Here we examine the hypothesis that RGCs employ molecular recognition systems to meet this challenge. By combining calcium imaging and type-specific histological stains we define a family of circuits that express the recognition molecule Sidekick 1 (Sdk1) which include a novel RGC type (S1-RGC) that responds to local edges. Genetic and physiological studies revealed that Sdk1 loss selectively disrupts S1-RGC visual responses which result from a loss of excitatory and inhibitory inputs and selective dendritic deficits on this neuron. We conclude that Sdk1 shapes dendrite growth and wiring to help S1-RGCs become feature selective.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yu-Po Cheng ◽  
Jian-Jia Huang ◽  
Chun-I Yeh ◽  
Yu-Cheng Pei

Paired stimulation has been applied to modulate neuronal functions in the primary somatosensory cortex but its utility in the alternation of tuning function, such as direction tuning for whisker stimuli, remains unclear. In the present study, we attempted to manipulate feature preferences in barrel cortical neurons using repetitive paired whisker deflection combined with optogenetic stimulation and to obtain optimal parameters that can induce neuroplasticity. We found no significant response changes across stimulus parameters, such as onset asynchronies and paired directions. Only when paired stimulation was applied in the nonpreferred direction of the principal whisker of a neuron, were the neuron’s responses enhanced in that direction. Importantly, this effect was only observed when the optogenetic stimulus preceded the mechanical stimulus. Our findings indicate that repetitive paired optogenetic-mechanical stimulation can induce in vivo neuroplasticity of feature selectivity in limited situations.


2021 ◽  
Author(s):  
Hannah M Oberle ◽  
Alex Ford ◽  
Jordyn Czarny ◽  
Pierre F. Apostolides

Corticofugal projections to evolutionarily ancient, sub-cortical structures are ubiquitous across mammalian sensory systems. These descending pathways enable the neocortex to control ascending sensory representations in a predictive or feedback manner, but the underlying cellular mechanisms are poorly understood. Here we combine optogenetic approaches with in vivo and in vitro patch-clamp electrophysiology to study the projection from auditory cortex to the inferior colliculus (IC), a major descending auditory pathway that controls IC neuron feature selectivity, plasticity and auditory perceptual learning. Although individual auditory cortico-collicular synapses were generally weak, IC neurons often integrated inputs from multiple corticofugal axons that generated reliable, tonic depolarizations even during prolonged presynaptic activity. Latency measurements in vivo showed that descending signals reach the IC within 30 ms of sound onset, which in IC neurons corresponded to the peak of synaptic depolarizations evoked by short sounds. Activating ascending and descending pathways at latencies expected in vivo caused a NMDA receptor dependent, supra-linear EPSP summation, indicating that descending signals can non-linearly amplify moment-to-moment acoustic responses. Our results shed light upon the synaptic bases of descending sensory control, and imply that heterosynaptic cooperativity contributes to sub-cortical plasticity and perceptual learning.


PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254611
Author(s):  
Anastasiia Vlasiuk ◽  
Hiroki Asari

Retinal ganglion cells (RGCs) are thought to be strictly postsynaptic within the retina. They carry visual signals from the eye to the brain, but do not make chemical synapses onto other retinal neurons. Nevertheless, they form gap junctions with other RGCs and amacrine cells, providing possibilities for RGC signals to feed back into the inner retina. Here we identified such feedback circuitry in the salamander and mouse retinas. First, using biologically inspired circuit models, we found mutual inhibition among RGCs of the same type. We then experimentally determined that this effect is mediated by gap junctions with amacrine cells. Finally, we found that this negative feedback lowers RGC visual response gain without affecting feature selectivity. The principal neurons of the retina therefore participate in a recurrent circuit much as those in other brain areas, not being a mere collector of retinal signals, but are actively involved in visual computations.


PLoS Biology ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. e3001299
Author(s):  
Pilar Montes-Lourido ◽  
Manaswini Kar ◽  
Stephen V. David ◽  
Srivatsun Sadagopan

Early in auditory processing, neural responses faithfully reflect acoustic input. At higher stages of auditory processing, however, neurons become selective for particular call types, eventually leading to specialized regions of cortex that preferentially process calls at the highest auditory processing stages. We previously proposed that an intermediate step in how nonselective responses are transformed into call-selective responses is the detection of informative call features. But how neural selectivity for informative call features emerges from nonselective inputs, whether feature selectivity gradually emerges over the processing hierarchy, and how stimulus information is represented in nonselective and feature-selective populations remain open question. In this study, using unanesthetized guinea pigs (GPs), a highly vocal and social rodent, as an animal model, we characterized the neural representation of calls in 3 auditory processing stages—the thalamus (ventral medial geniculate body (vMGB)), and thalamorecipient (L4) and superficial layers (L2/3) of primary auditory cortex (A1). We found that neurons in vMGB and A1 L4 did not exhibit call-selective responses and responded throughout the call durations. However, A1 L2/3 neurons showed high call selectivity with about a third of neurons responding to only 1 or 2 call types. These A1 L2/3 neurons only responded to restricted portions of calls suggesting that they were highly selective for call features. Receptive fields of these A1 L2/3 neurons showed complex spectrotemporal structures that could underlie their high call feature selectivity. Information theoretic analysis revealed that in A1 L4, stimulus information was distributed over the population and was spread out over the call durations. In contrast, in A1 L2/3, individual neurons showed brief bursts of high stimulus-specific information and conveyed high levels of information per spike. These data demonstrate that a transformation in the neural representation of calls occurs between A1 L4 and A1 L2/3, leading to the emergence of a feature-based representation of calls in A1 L2/3. Our data thus suggest that observed cortical specializations for call processing emerge in A1 and set the stage for further mechanistic studies.


Sign in / Sign up

Export Citation Format

Share Document