ionic hydrogen bonding
Recently Published Documents


TOTAL DOCUMENTS

33
(FIVE YEARS 6)

H-INDEX

12
(FIVE YEARS 1)

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Masaki Takahashi ◽  
Nozomu Ito ◽  
Naoki Haruta ◽  
Hayato Ninagawa ◽  
Kohei Yazaki ◽  
...  

AbstractAnions often quench fluorescence (FL). However, strong ionic hydrogen bonding between fluorescent dyes and anion molecules has the potential to control the electronic state of FL dyes, creating new functions via non-covalent interactions. Here, we propose an approach, utilising ionic hydrogen bonding between urea groups and anions, to control the electronic states of fluorophores and develop an aggregation-induced emission enhancement (AIEE) system. The AIEE ionic hydrogen-bonded complex (IHBC) formed between 1,8-diphenylnaphthalene (p-2Urea), with aryl urea groups at the para-positions on the peri-phenyl rings, and acetate ions exhibits high environmental sensitivities in solution phases, and the FL quantum yield (QY) in ion-pair assemblies of the IHBC and tetrabutylammonium cations is more than five times higher than that of the IHBC in solution. Our versatile and simple approach for the design of AIEE dye facilitates the future development of environment-sensitive probes and solid-state emitting materials.


2020 ◽  
Author(s):  
Masaki Takahashi ◽  
Nozomu Ito ◽  
Hayato Ninagawa ◽  
Kohei Yazaki ◽  
Yoshihisa Sei ◽  
...  

Abstract Anions often quench fluorescence (FL). However, strong ionic hydrogen bonding between fluorescent dyes and anion molecules has the potential to control the electronic state of FL dyes, creating new functions via non-covalent interactions. Here, we propose a novel approach, utilising ionic hydrogen bonding between urea groups and anions, to control the electronic states of fluorophores and develop an aggregation-induced emission enhancement (AIEE) system. The AIEE ionic hydrogen-bonded complex (IHBC) formed between 1,8-diphenylnaphthalene (p-2urea), with aryl urea groups at the para-positions on the peri-phenyl rings, and acetate ions exhibits a remarkably high sensitivity to fluid viscosity compared with most conventional viscosity-sensitive dyes, and the FL quantum yield (QY) in ion-pair assemblies of the IHBC and tetrabutylammonium cations is more than five times higher than that of the IHBC in solution. Our versatile and simple approach for the design of AIEE dye facilitates the future development of viscosity probes and solid-state emitting materials.


2018 ◽  
Vol 475 (22) ◽  
pp. 3651-3667 ◽  
Author(s):  
Mingming Qin ◽  
Haigang Song ◽  
Xin Dai ◽  
Yaozong Chen ◽  
Zhihong Guo

The bacterial enzyme MenD, or 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate (SEPHCHC) synthase, catalyzes an essential Stetter reaction in menaquinone (vitamin K2) biosynthesis via thiamine diphosphate (ThDP)-bound tetrahedral post-decarboxylation intermediates. The detailed mechanism of this intermediate chemistry, however, is still poorly understood, but of significant interest given that menaquinone is an essential electron transporter in many pathogenic bacteria. Here, we used site-directed mutagenesis, enzyme kinetic assays, and protein crystallography to reveal an active–inactive intermediate equilibrium in MenD catalysis and its modulation by two conserved active site arginine residues. We observed that these conserved residues play a key role in shifting the equilibrium to the active intermediate by orienting the C2-succinyl group of the intermediates through strong ionic hydrogen bonding. We found that when this interaction is moderately weakened by amino acid substitutions, the resulting proteins are catalytically competent with the C2-succinyl group taking either the active or the inactive orientation in the post-decarboxylation intermediate. When this hydrogen-bonding interaction was strongly weakened, the succinyl group was re-oriented by 180° relative to the native intermediate, resulting in the reversal of the stereochemistry at the reaction center that disabled catalysis. Interestingly, this inactive intermediate was formed with a distinct kinetic behavior, likely as a result of a non-native mode of enzyme–substrate interaction. The mechanistic insights gained from these findings improve our understanding of the new ThDP-dependent catalysis. More importantly, the non-native-binding site of the inactive MenD intermediate uncovered here provides a new target for the development of antibiotics.


2017 ◽  
Vol 4 (12) ◽  
pp. 170982 ◽  
Author(s):  
Puja Adhikari ◽  
Redouane Khaoulaf ◽  
Hamid Ez-Zahraouy ◽  
Wai-Yim Ching

The electronic structure and interatomic bonding of pyrophosphate crystal K 2 Mg (H 2 P 2 O 7 ) 2 ·2H 2 O are investigated for the first time showing complex interplay of different types of bindings. The existing structure from single-crystal X-ray diffraction is not sufficiently refined, resulting in unrealistic short O─H bonds which is rectified by high-precision density functional theory (DFT) calculation. K 2 Mg (H 2 P 2 O 7 ) 2 ·2H 2 O has a direct gap of 5.22 eV and a small electron effective mass of 0.14 m e . Detailed bond analysis between every pair of atoms reveals the complexity of various covalent, ionic, hydrogen bonding and bridging bonding and their sensitive dependence on structural differences. The K--O bonds are much weaker than Mg--O bonds and contributions from the hydrogen bonds are non-negligible. Quantitative analysis of internal cohesion in terms of total bond order density and partial bond order density divulges the relative importance of different types of bonding. The calculated optical absorptions show multiple peaks and a sharp Plasmon peak at 23 eV and a refractive index of 1.44. The elastic and mechanical properties show features unique to this low-symmetry crystal. Phonon calculation gives vibrational frequencies in agreement with reported Raman spectrum. These results provide new insights indicating that acidic pyrophosphates could have a variety of unrealized applications in advanced technology.


2017 ◽  
Vol 73 (10) ◽  
pp. 1568-1571
Author(s):  
Ugochukwu Okeke ◽  
Yilma Gultneh ◽  
Ray J. Butcher

The structure of the title compound, [Zn(C14H18N4)(C2H3N)(H2O)](ClO4)2, contains a six-coordinate cation consisting of the tetradentate bispicen ligand, coordinated water, and coordinated acetonitrile, with the latter two ligands adopting acisconfiguration. There are two formula units in the asymmetric unit. Both cations show almost identical structural features with the bispicen ligand adopting the more commoncis-β conformation. One of the four perchlorate anions is disordered over two positions, with occupancies of 0.9090 (15) and 0.0910 (15). There is extensive inter-ionic hydrogen bonding between the perchlorate anions and O—H and N—H groups in the cations, including a bifurcated hydrogen bond between an N—H group and two O atoms of one perchlorate anion. As a result of this extended hydrogen-bond network, the ions are linked into a complex three-dimensional array.


Sign in / Sign up

Export Citation Format

Share Document