aluminum powders
Recently Published Documents


TOTAL DOCUMENTS

298
(FIVE YEARS 70)

H-INDEX

27
(FIVE YEARS 5)

Author(s):  
Boris N. Filatov ◽  
Natalya I. Latyshevskaya ◽  
Natalya V. Krylova ◽  
Irina K. Gorkina ◽  
Yulya I. Velikorodnaya ◽  
...  

The presence of grinding, mixing, and fractionation of solid components of formulations leads to the formation of aerosols in the air of the working area with a wide range of dispersion of the solid phase - all this characterizes the organization of technological processes for the production of energy-intensive materials. The study aims to give a qualitative assessment of possible air pollution of the working area of energy-intensive materials production by nanoscale aerosols with a solid dispersed phase. The researchers carried out the sampling of the working area air and flushes from solid horizontal surfaces to produce energy-intensive materials. We carried out the sampling by forced circulation of the test air through the absorption devices of Polezhaev. Scientists used Triton TX-114 solution with a mass concentration of 2.0 mg/dm3 as an absorption medium. The researchers performed flushing from surfaces using cloth tampons moistened with Triton TX-114 solution with a mass concentration of 2.0 mg/dm3. We determined the particle sizes in the samples using NanotracULTRA (Microtrac). Scientists found aluminum and nitrocellulose particles with sizes from 36 to 102 nm in the air of the working area and flushes from horizontal surfaces. The study of the fractional composition of RDX and aluminum powders of the ASD-1 brand showed the presence of nanoscale particles in them. Nanoscale dust particles pollute the air of the working area and solid horizontal surfaces at certain stages of the production of energy-intensive materials. There are nanoscale particles in the composition of powders of some standard components of formulations. Flushes from solid horizontal surfaces are an adequate qualitative indicator of the presence of nanoaerosols in the air of the working area.


Nanomaterials ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 3372
Author(s):  
Roberto Hernández-Maya ◽  
Nicolás Antonio Ulloa-Castillo ◽  
Oscar Martínez-Romero ◽  
Emmanuel Segura-Cárdenas ◽  
Alex Elías-Zúñiga

The aim of this paper focuses on presenting a recent study that describes the fundamental steps needed to effectively scale-up from lab to mass production parts produced from Al powders reinforced with 0.5 wt% of industrial multiwalled carbon nanotubes (MWCNTs), with mechanical and electrical conductivity properties higher that those measured at the lab scale. The produced material samples were produced via a Spark Plasma Sintering (SPS) process using nanocomposite aluminum powders elaborated with a planetary ball-mill at the lab scale, and high-volume attrition milling equipment in combination with controlled atmosphere sinter hardening furnace equipment, which were used to consolidate the material at the industrial level. Surprisingly, the electrical conductivity and mechanical properties of the samples produced with the reinforced nanocomposite Al powders were made with mass production equipment and were similar or higher than those samples fabricated using metallic powders prepared with ball-mill lab equipment. Experimental measurements show that the hardness and the electrical conductivity properties of the samples fabricated with the mass production Al powders are 48% and 7.5% higher than those of the produced lab samples. This paper elucidates the steps that one needs to follow during the mass production process of reinforced aluminum powders to improve the physical properties of metallic samples consolidated via the SPS process.


Author(s):  
F.D. Manilevich ◽  
Yu. K. Pirskyy ◽  
A.V. Kutsyi ◽  
V.V. Berezovets ◽  
V.A. Yartys
Keyword(s):  

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7394
Author(s):  
Olga Kudryashova ◽  
Marat Lerner ◽  
Alexander Vorozhtsov ◽  
Sergei Sokolov ◽  
Vladimir Promakhov

This article dwells upon the additive manufacturing of high-energy materials (HEM) with regards to the problems of this technology’s development. This work is aimed at identifying and describing the main problems currently arising in the use of AM for nanostructured high-energy materials and gives an idea of the valuable opportunities that it provides in the hope of promoting further development in this area. Original approaches are proposed for solving one of the main problems in the production of nanostructured HEM—safety and viscosity reduction of the polymer-nanopowder system. Studies have shown an almost complete degree of deagglomeration of microencapsulated aluminum powders. Such powders have the potential to create new systems for safe 3D printing using high-energy materials.


2021 ◽  
Vol 63 (12) ◽  
pp. 1157-1163
Author(s):  
Hasan Karabulut ◽  
Kubilay Karacif ◽  
Ramazan Çıtak ◽  
Hanifi Çinici

Abstract In the study, the corrosion behavior of aluminum matrix composites reinforced with boron carbide (B4C), silicon carbide (SiC) and alumina (Al2O3) were investigated in saltwater (3.5 % NaCl). Composite materials were produced by powder metallurgy. For composite materials production, various reinforcement and aluminum powders were mixed by mechanical alloying for 4 and 10 hours. After mechanical alloying, mixed powders were compacted under 700 MPa pressure and sintered at 600 °C. Electrochemical corrosion tests were applied on specimens in the saltwater solution using potentiodynamic methods. According to the results of the investigation, the best corrosion resistance was obtained by aluminum/B4C and the lowest by aluminum/Al2O3 composites.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6602
Author(s):  
Alexander Pervikov ◽  
Nikita Toropkov ◽  
Sergey Kazantsev ◽  
Olga V. Bakina ◽  
Elena Glazkova ◽  
...  

Electrical explosion of aluminum wires has been shown to be a versatile method for the preparation of bimodal nano/micro powders. The energy input into the wire has been found to determine the relative content of fine and coarse particles in bimodal aluminum powders. The use of aluminum bimodal powders has been shown to be promising for the development of high flowability feedstocks for metal injection molding and material extrusion additive manufacturing.


2021 ◽  
Vol 2096 (1) ◽  
pp. 012164
Author(s):  
Yu P Zarichnyak ◽  
V A Ivanov ◽  
A A Marova ◽  
I N Nikolaev ◽  
V P Khodunkov

Abstract A model of the structure and a method for calculating (forecasting) the thermal conductivity of beds from coarse to nano-dispersed aluminum powders are developed. A significant change in the thermal conductivity of the particles themselves was taken into account during the transition from the micro-meter to the nanometer-sized range of particle sizes. The thermal conductivity was calculated over a wide range of particle sizes, granular structure skeleton porosity, and total porosity of the beds.


Author(s):  
Oleg Gaidamak ◽  
Viktor Matviychuk

The article presents the results of research on the processes of creating conductive coatings based on copper and aluminum in order to determine the interaction of components on each other during cold gas-dynamic spraying (CGDS) and substantiate the method of introducing an additional component to obtain the desired composite coating. In particular, under conditions when the copper sputtering coefficient is almost zero (at a working air temperature of 300 °C), it is the search for the experimental dependence of the sputtering coefficient on the percentage of copper and aluminum powders in the sprayed mixture, determining their residual content in the coating and then calculating based on these data, the sputtering coefficients of copper and aluminum. The CGDS method obtained samples with composite coatings from mixtures of aluminum and copper powders at different initial mass concentrations of aluminum (from 0 to 100%, in increments of 10%) Other things being equal (air pressure 0,6 MPa, air heating temperature 300 ° C) . The spraying ratio of the mixture and the residual content of the components in the obtained composite coatings were measured. Data on the residual content of the components in the coating allows you to select the composition of the source powder required to obtain a given content of components in the coating. The dependences of the sputtering coefficients of copper and aluminum on the mass content of aluminum in the sprayed mixture are found. At an initial concentration of aluminum less than 66%. the coefficient of copper sputtering is higher than the coefficient of sputtering of aluminum. Both increase monotonically with increasing aluminum concentration until it reaches 61%. At high concentrations of aluminum (more than 66%) the spray coefficients of copper, aluminum and their mixtures coincide. The obtained data on the residual content of the components in the coating allows you to select the composition of the source powder required to obtain a given content of components in the coating. For example, the maximum residual copper content (~ 95%) can be obtained by adding to the source powder 30-40% aluminum. The obtained results confirm the interaction of the components on each other and justify the method of introducing an additional component to obtain a composite coating containing a component that is difficult to spray.


2021 ◽  
Vol 1 (3) ◽  
pp. 169-175
Author(s):  
Maryam Akhlaghi ◽  
Esmaeil Salahi ◽  
Seyed Ali Tayebifard ◽  
Gert Schmidt

Five TiAl–Ti3AlC2 composite samples containing (10, 15, 20, 25 and 30 wt% Ti3AlC2 MAX phase) were prepared by spark plasma sintering technique at 900 °C for 7 min under 40 MPa. For this purpose, metallic titanium and aluminum powders (aiming at the in-situ formation of the TiAl matrix phase) were ball-milled with predetermined contents of Ti3AlC2 MAX phase, which already was synthesized using the same metallic powders as well as graphite flakes. Displacement-time-temperature variations during the heating and sintering steps, displacement rate versus temperature, displacement rate versus time, and densification behavior were studied. Two sharp changes were detected in the diagrams: the first one, ~16 min after the start of the heating process due to the melting of Al, and the second one, after ~35 min because of the sintering progression and the applied final pressure. The highest relative densities were measured for the samples doped with 20 and 25 wt% Ti3AlC2 additives. More Ti3AlC2 addition resulted in decreased relative density because of the agglomeration of MAX phase particles.


Sign in / Sign up

Export Citation Format

Share Document