epigenetic patterns
Recently Published Documents


TOTAL DOCUMENTS

130
(FIVE YEARS 54)

H-INDEX

21
(FIVE YEARS 6)

2022 ◽  
Vol 8 ◽  
Author(s):  
J. Samael Rodríguez-Sanabria ◽  
Rebeca Escutia-Gutiérrez ◽  
Rebeca Rosas-Campos ◽  
Juan S. Armendáriz-Borunda ◽  
Ana Sandoval-Rodríguez

Metabolic-associated fatty liver disease (MAFLD) is characterized by hepatic steatosis accompanied by one of three features: overweight or obesity, T2DM, or lean or normal weight with evidence of metabolic dysregulation. It is distinguished by excessive fat accumulation in hepatocytes, and a decrease in the liver's ability to oxidize fats, the accumulation of ectopic fat, and the activation of proinflammatory pathways. Chronic damage will keep this pathophysiologic cycle active causing progression from hepatic steatosis to cirrhosis and eventually, hepatocarcinoma. Epigenetics affecting gene expression without altering DNA sequence allows us to study MAFLD pathophysiology from a different perspective, in which DNA methylation processes, histone modifications, and miRNAs expression have been closely associated with MAFLD progression. However, these considerations also faced us with the circumstance that modifying those epigenetics patterns might lead to MAFLD regression. Currently, epigenetics is an area of great interest because it could provide new insights in therapeutic targets and non-invasive biomarkers. This review comprises an update on the role of epigenetic patterns, as well as innovative therapeutic targets and biomarkers in MAFLD.


2021 ◽  
Vol 15 ◽  
Author(s):  
Alexandre A. Lussier ◽  
Tamara S. Bodnar ◽  
Joanne Weinberg

Prenatal alcohol exposure can impact virtually all body systems, resulting in a host of structural, neurocognitive, and behavioral abnormalities. Among the adverse impacts associated with prenatal alcohol exposure are alterations in immune function, including an increased incidence of infections and alterations in immune/neuroimmune parameters that last throughout the life-course. Epigenetic patterns are also highly sensitive to prenatal alcohol exposure, with widespread alcohol-related alterations to epigenetic profiles, including changes in DNA methylation, histone modifications, and miRNA expression. Importantly, epigenetic programs are crucial for immune system development, impacting key processes such as immune cell fate, differentiation, and activation. In addition to their role in development, epigenetic mechanisms are emerging as attractive candidates for the biological embedding of environmental factors on immune function and as mediators between early-life exposures and long-term health. Here, following an overview of the impact of prenatal alcohol exposure on immune function and epigenetic patterns, we discuss the potential role for epigenetic mechanisms in reprogramming of immune function and the consequences for health and development. We highlight a range of both clinical and animal studies to provide insights into the array of immune genes impacted by alcohol-related epigenetic reprogramming. Finally, we discuss potential consequences of alcohol-related reprogramming of immune/neuroimmune functions and their effects on the increased susceptibility to mental health disorders. Overall, the collective findings from animal models and clinical studies highlight a compelling relationship between the immune system and epigenetic pathways. These findings have important implications for our understanding of the biological mechanisms underlying the long-term and multisystem effects of prenatal alcohol exposure, laying the groundwork for possible novel interventions and therapeutic strategies to treat individuals prenatally exposed to alcohol.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 6051
Author(s):  
Alexandra Lindsey Djomkam Zune ◽  
Charles Ochieng’ Olwal ◽  
Kesego Tapela ◽  
Oloche Owoicho ◽  
Nora Nghochuzie Nganyewo ◽  
...  

Cancer is a major public health burden worldwide. Tumor formation is caused by multiple intrinsic and extrinsic factors. Many reports have demonstrated a positive correlation between the burden of infectious pathogens and the occurrence of cancers. However, the mechanistic link between pathogens and cancer development remains largely unclear and is subject to active investigations. Apart from somatic mutations that have been widely linked with various cancers, an appreciable body of knowledge points to alterations of host epigenetic patterns as key triggers for cancer development. Several studies have associated various infectious pathogens with epigenetic modifications. It is therefore plausible to assume that pathogens induce carcinogenesis via alteration of normal host epigenetic patterns. Thus, Africa with its disproportionate burden of infectious pathogens is threatened by a dramatic increase in pathogen-mediated cancers. To curb the potential upsurge of such cancers, a better understanding of the role of tropical pathogens in cancer epigenetics could substantially provide resources to improve cancer management among Africans. Therefore, this review discusses cancer epigenetic studies in Africa and the link between tropical pathogens and cancer burden. In addition, we discuss the potential mechanisms by which pathogens induce cancers and the opportunities and challenges of tropical pathogen-induced epigenetic changes for cancer prevention, detection and management.


Healthcare ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1652
Author(s):  
Hanan Aljuaid ◽  
Hanan A. Hosni Mahmoud

Epigenetic changes are a necessary characteristic of all cancer types. Tumor cells usually target genetic changes and epigenetic alterations as well. It is most beneficial to identify epigenetic similar features among cancer various types to be able to discover the appropriate treatments. The existence of epigenetic alteration profiles can aid in targeting this goal. In this paper, we propose a new technique applying data mining and clustering methodologies for cancer epigenetic changes analysis. The proposed technique aims to detect common patterns of epigenetic changes in various cancer types. We demonstrated the validation of the new technique by detecting epigenetic patterns across seven cancer types and by determining epigenetic similarities among various cancer types. The experimental results demonstrate that common epigenetic patterns do exist across these cancer types. Additionally, epigenetic gene analysis performed on the associated genes found a strong relationship with the development of various types of cancer and proved high risk across the studied cancer types. We utilized the frequent pattern data mining approach to represent cancer types compactly in the promoters for some epigenetic marks. Utilizing the built frequent pattern item set, the most frequent items are identified and yield the group of the bi-clusters of these patterns. Experimental results of the proposed method are shown to have a success rate of 88% in detecting cancer types according to specific epigenetic pattern.


2021 ◽  
Author(s):  
Noa Furth ◽  
Danielle Algranati ◽  
Bareket Dassa ◽  
Olga Beresh ◽  
Vadim Fedyuk ◽  
...  

Cancer-associated mutations in genes encoding histones dramatically reshape chromatin and support tumorigenesis. Lysine to methionine substitution of residue 27 on histone H3 (K27M) is a driver mutation in high-grade pediatric gliomas, known to abrogate Polycomb Repressive Complex 2 (PRC2) activity. We applied single-molecule systems to image individual nucleosomes and delineate the combinatorial epigenetic patterns associated with H3-K27M expression. We found that chromatin marks on H3-K27M-mutant nucleosomes are dictated both by their incorporation preferences and by intrinsic properties of the mutation. Mutant nucleosomes not only preferentially bind PRC2, but also directly interact with MLL1, thus leading to genome-wide redistribution of H3K4me3. H3-K27M-mediated deregulation of both repressive and active chromatin marks leads to unbalanced 'bivalent' chromatin, which may support a poorly differentiated cellular state. This study provides evidence for a direct effect of H3-K27M oncohistone on the MLL1-H3K4me3 pathway and highlights the capability of single-molecule tools to reveal mechanisms of chromatin deregulation in cancer.


Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1232
Author(s):  
Sadaf Harandi-Zadeh ◽  
Cayla Boycott ◽  
Megan Beetch ◽  
Tony Yang ◽  
Benjamin J. E. Martin ◽  
...  

Epigenetic aberrations are linked to sporadic breast cancer. Interestingly, certain dietary polyphenols with anti-cancer effects, such as pterostilbene (PTS), have been shown to regulate gene expression by altering epigenetic patterns. Our group has proposed the involvement of DNA methylation and DNA methyltransferase 3B (DNMT3B) as vital players in PTS-mediated suppression of candidate oncogenes and suggested a role of enhancers as target regions. In the present study, we assess a genome-wide impact of PTS on epigenetic marks at enhancers in highly invasive MCF10CA1a breast cancer cells. Following chromatin immunoprecipitation (ChIP)-sequencing in MCF10CA1a cells treated with 7 μM PTS for 9 days, we discovered that PTS leads to increased binding of DNMT3B at enhancers of 77 genes, and 17 of those genes display an overlapping decrease in the occupancy of trimethylation at lysine 36 of histone 3 (H3K36me3), a mark of active enhancers. We selected two genes, PITPNC1 and LINC00910, and found that their enhancers are hypermethylated in response to PTS. These changes coincided with the downregulation of gene expression. Of importance, we showed that 6 out of 17 target enhancers, including PITPNC1 and LINC00910, are bound by an oncogenic transcription factor OCT1 in MCF10CA1a cells. Indeed, the six enhancers corresponded to genes with established or putative cancer-driving functions. PTS led to a decrease in OCT1 binding at those enhancers, and OCT1 depletion resulted in PITPNC1 and LINC00910 downregulation, further demonstrating a role for OCT1 in transcriptional regulation. Our findings provide novel evidence for the epigenetic regulation of enhancer regions by dietary polyphenols in breast cancer cells.


2021 ◽  
Author(s):  
Romain Barres ◽  
Emil Andersen ◽  
Wolf Reik ◽  
Stephen Clark ◽  
Lars Ingerslev ◽  
...  

Epigenetic marks in gametes modulate developmental programming after fertilization. Spermatozoa from obese men exhibit distinct epigenetic signatures compared to lean men, however, whether epigenetic differences are concentrated in a sub-population of spermatozoa or spread across the ejaculate population is unknown. Here, by using whole-genome single-cell bisulfite sequencing on 87 motile spermatozoa from 8 individuals (4 lean and 4 obese), we found that spermatozoa within single ejaculates are highly heterogeneous and contain subsets of spermatozoa with marked imprinting defects. Comparing lean and obese subjects, we discovered methylation differences across two large CpG dense regions located near PPM1D and LINC01237. These findings confirm that sperm DNA methylation is altered in human obesity and indicate that single ejaculates contain subpopulations of spermatozoa carrying distinct DNA methylation patterns. Distinct epigenetic patterns of spermatozoa within an ejaculate may result in different intergenerational effects and therefore influence strategies aiming to prevent epigenetic-related disorders in the offspring.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Sara Gomez-Cabellos ◽  
Peter E. Toorop ◽  
María Jesús Cañal ◽  
Pietro P. M. Iannetta ◽  
Eduardo Fernández-Pascual ◽  
...  

AbstractDespite the importance of dormancy and dormancy cycling for plants’ fitness and life cycle phenology, a comprehensive characterization of the global and cellular epigenetic patterns across space and time in different seed dormancy states is lacking. Using Capsella bursa-pastoris (L.) Medik. (shepherd’s purse) seeds with primary and secondary dormancy, we investigated the dynamics of global genomic DNA methylation and explored the spatio-temporal distribution of 5-methylcytosine (5-mC) and histone H4 acetylated (H4Ac) epigenetic marks. Seeds were imbibed at 30 °C in a light regime to maintain primary dormancy, or in darkness to induce secondary dormancy. An ELISA-based method was used to quantify DNA methylation, in relation to total genomic cytosines. Immunolocalization of 5-mC and H4Ac within whole seeds (i.e., including testa) was assessed with reference to embryo anatomy. Global DNA methylation levels were highest in prolonged (14 days) imbibed primary dormant seeds, with more 5-mC marked nuclei present only in specific parts of the seed (e.g., SAM and cotyledons). In secondary dormant seeds, global methylation levels and 5-mC signal where higher at 3 and 7 days than 1 or 14 days. With respect to acetylation, seeds had fewer H4Ac marked nuclei (e.g., SAM) in deeper dormant states, for both types of dormancy. However, the RAM still showed signal after 14 days of imbibition under dormancy-inducing conditions, suggesting a central role for the radicle/RAM in the response to perceived ambient changes and the adjustment of the seed dormancy state. Thus, we show that seed dormancy involves extensive cellular remodeling of DNA methylation and H4 acetylation.


2021 ◽  
Author(s):  
Ariel Gershman ◽  
Michael E.G. Sauria ◽  
Paul W Hook ◽  
Savannah Hoyt ◽  
Roham Razaghi ◽  
...  

The completion of the first telomere-to-telomere human genome, T2T-CHM13, enables exploration of the full epigenome, removing limitations previously imposed by the missing reference sequence. Existing epigenetic studies omit unassembled and unmappable genomic regions (e.g. centromeres, pericentromeres, acrocentric chromosome arms, subtelomeres, segmental duplications, tandem repeats). Leveraging the new assembly, we were able to measure enrichment of epigenetic marks with short reads using k-mer assisted mapping methods. This granted array-level enrichment information to characterize the epigenetic regulation of these satellite repeats. Using nanopore sequencing data, we generated base level maps of the most complete human methylome ever produced. We examined methylation patterns in satellite DNA and revealed organized patterns of methylation along individual molecules. When exploring the centromeric epigenome, we discovered a distinctive dip in centromere methylation consistent with active sites of kinetochore assembly. Through long-read chromatin accessibility measurements (nanoNOMe) paired to CUT&RUN data, we found the hypomethylated region was extremely inaccessible and paired to CENP-A/B binding. With long-reads we interrogated allele-specific, long-range epigenetic patterns in complex macro-satellite arrays such as those involved in X chromosome inactivation. Using the single molecule measurements we can clustered reads based on methylation status alone distinguishing epigenetically heterogeneous and homogeneous areas. The analysis provides a framework to investigate the most elusive regions of the human genome, applying both long and short-read technology to grant new insights into epigenetic regulation.


Sign in / Sign up

Export Citation Format

Share Document