foliar disease
Recently Published Documents


TOTAL DOCUMENTS

168
(FIVE YEARS 38)

H-INDEX

24
(FIVE YEARS 3)

Author(s):  
Nathan Kleczewski ◽  
Andrew Kness ◽  
Alyssa Koehler

Double cropped soybeans are planted on approximately 1/3 of crop acres in the Chesapeake Bay region of the United States. Producers have asked if foliar fungicides are required to optimize yields in this region. We assessed the impacts of foliar fungicide application timing and row spacing on foliar disease, greenstem, and yield from 11 site years spanning 2017-2019. Foliar diseases only developed at rateable levels in one location. Fungicide application, regardless of timing, increased percent greenstem over non-treated controls. Fungicide application did not impact soybean yield. Yield was greater in 38.1 cm rows when compared to 19 cm rows. Our data do not support the use of foliar fungicides in double cropped soybean production in this region.


2021 ◽  
Vol 47 (6) ◽  
pp. 556-561
Author(s):  
G. V. Volkova ◽  
A. V. Danilova ◽  
Ye. V. Yakhnik ◽  
E. V. Gladkova ◽  
O. V. Tarancheva

Author(s):  
Hannah Reed ◽  
Brian Mueller ◽  
Carol L. Groves ◽  
Damon L. Smith

Corn, Zea mays L., is one of the most widely grown crops in the United States due to its importance as a feed, food, and fuel crop. Silage is a high energy, fermented feed that uses the entire corn plant and is important for feeding dairy cows. Any disease that affects the plant’s physiology can reduce silage quality. The goal of this study was to evaluate fungicide treatments on silage corn hybrids to determine their effect on fungal diseases, including those caused by Fusarium graminearum, on silage quality. Foliar fungicide trials were conducted in Arlington, Wisconsin in 2018 and 2019 and included two brown-midrib silage hybrids. In-field disease ratings were collected for foliar disease symptoms, ear rot severity, and lodging. Harvested silage was analyzed for yield, quality parameters, and mycotoxin (deoxynivalenol, DON) concentration. There were significant differences in all measured parameters between years and hybrids; however, only the foliar disease ratings were consistently reduced by the use of fungicide treatments. DON concentrations were significantly lower for two fungicide treatments in one hybrid in 2019. There were no significant differences among the treatments used on yield or any quality parameters in this study. More research needs to be done to find potential fungicides that can consistently reduce F. graminearum damage and DON concentration in silage corn.


Author(s):  
Kaique S. Alves ◽  
Mariana Guimarães ◽  
João Paulo Ascari ◽  
Marcia F. Queiroz ◽  
Rafael F. Alfenas ◽  
...  

2021 ◽  
pp. PHP-01-21-0002-
Author(s):  
Nolan R. Anderson ◽  
Carl A. Bradley ◽  
Kiersten A. Wise

The official common name of the foliar disease on corn is Diplodia leaf streak, often given the shorthand nomenclature DLS. The only known host of DLS is corn (Zea mays). The fungus that causes DLS is Stenocarpella macrospora (syn. Diplodia macrospora). DLS symptoms can be confused with several common foliar diseases of corn. This guide details symptoms and signs, as well as pathogen identification.


Plant Disease ◽  
2021 ◽  
Author(s):  
Sujata Singh Yadav ◽  
Priyanka Suryavanshi ◽  
Indrajeet Nishad ◽  
Soumya Sinha

Sweet basil (Ocimum basilicum L.; Family Lamiaceae) is an annual aromatic and medicinal plant grown in tropical and subtropical regions of the world. In India, it is cultivated as a commercial crop on ~8,000 ha. Aerial plant parts and essential oil of sweet basil are used in pharmaceutical, perfumery, food industries and in different formulations of traditional Ayurvedic and Unani medicines (Shahrajabian et al. 2020). The leaves have the highest concentrations of secondary metabolites such as terpenes and phenylpropanoids which provide the distinctive aroma (Viuda-Martos et al. 2011). During October 2020, severe foliar disease was observed in experimental fields of sweet basil at Council of Scientific and Industrial Research (CSIR)-Central Institute of Medicinal and Aromatic Plants (CIMAP) in Lucknow, India. Initial symptoms included large, interveinal chlorotic lesions on the adaxial surface of the leaves and black sporulation on the abaxial surface. Within a few days, the abaxial side of leaves turned necrotic, and leaf senescence and defoliation occurred on plants with severe symptoms. Disease incidence was 20 to 30% of plants. The pathogen was characterized morphologically using a light microscope. Sporangiophores were hyaline, dichotomously branched, 186.9 to 423.07 × 6.85 to 9.06 µm and, branched 3 to 5 times with each branch, terminating in two slightly curved branchlets, the longer one 7.05 to 25.31 µm and the shorter one 4.98 to 15.92 µm. Each branchlet had a single sporangium at the tip. Conidia were ellipsoidal to sub-globose, olive-brown in color, and typically measured 25.21 to 33.86 × 17.92 to 26.24 µm, each, without a pedicel. Based on these morphological characteristics, the foliar disease was identified as downy mildew was caused by Peronospora belbahrii (Thines et al. 2009). Eight symptomatic and two asymptomatic plant samples were collected from different locations in the field, and genomic DNA was extracted from the conidia of the eight naturally infected tissues of sweet basil samples as well as leaf tissues from two asymptomatic plants, using the CTAB method. The internal transcribed spacer region was amplified using ITS1 and ITS4 primers. Only eight infected samples amplified products of expected size (~ 700 bp) and two asymptomatic samples showed no amplification. Only five amplified PCR products were sequenced (White et al. 1990). All five sequences were identical and were a 98.1% match with five P. belbahrii isolates (MN450330.1, MN308051.1, MH620351.1, KJ960193, and MF693898). The consensus sequence was deposited into the NCBI database (GenBank Accession No. MW689257). Downy mildew caused by P. belbahrii previously has been reported on sweet basil from several countries (Wyenandt et al. 2015). To confirm the pathogenicity of these isolates on sweet basil (cv. CIM-Saumya), 25 - day-old sweet basil plants were sprayed with a suspension (1 × 105 sporangia/ml) of P. belbahrii. All plants were kept in a growth chamber with a 23/18°C diurnal cycle with 65 to 85% relative humidity for 24 h. Non-inoculated plants treated with sterile water served as a control treatment. After 8 days, typical symptoms of downy mildew appeared on all the inoculated plants while non-inoculated plants remained asymptomatic. Inoculated leaves with symptoms consistent of downy mildew were collected and the causal agent again identified as P. belbahrii on the basis of microscopic examination and ITS rDNA sequence data. To our knowledge, this is the first report of downy mildew caused by P. belbahrii on sweet basil in India. The pathogen has a broad host range and may pose a serious threat to the cultivation of this valuable crop in India. Thus, it is pertinent to develop effective control measures to avoid further spread and mitigate economic loss. References: Shahrajabian, M. H., et al. 2020. Int. J. Food Prop. 23:1961-1970. Wyenandt, C. A., et al. 2015. Phytopathology 105:885. Thines, M., et al. 2009. Mycol. Res. 113:532. White, T. J., et al. 1990. Page 315 in: PCR Protocols: A Guide to Methods and Applications. Viuda-Martos, M., et al. 2011. Food Control. 22:1715.


HortScience ◽  
2021 ◽  
pp. 1-9
Author(s):  
Douglas S. Higgins ◽  
Mary K. Hausbeck

Annual downy mildew [Pseudoperonospora humuli (Miyabe & Takah.) G.W. Wilson, (1914)] epidemics threaten hop (Humulus lupulus L. var. lupulus) production throughout the eastern United States. Rootstock rot complicates foliar disease assessments because dormant buds may rot before producing a symptomatic basal shoot and noncolonized buds produce healthy shoots. We selected 12 cultivars to evaluate downy mildew susceptibility (2016 and 2017) and examined the rhizomes of a subset of six cultivars (2018) that showed clear differences in foliar disease ratings to determine rootstock rot susceptibility. Trials were conducted on nontrellised hop yards established at two research farms in 2016 and managed without fungicides. The relative area under the disease progress curve (rAUDPC) values for foliar disease severity and density ratings were consistently higher for ‘Cascade’, ‘Centennial’, and ‘Nugget’ than for ‘Newport’, ‘Tahoma’, and ‘Columbia’. Only ‘Centennial’ had a higher wet-rot cortex discoloration (CD) incidence (71.5%) and severity (31.9%) in its rhizomes than the other cultivars. Among cultivars with low foliar disease levels, Columbia was less vigorous (shoots/plant) than ‘Tahoma’, but had similar wet-rot CD (incidence, 46.4% to 47.2%; severity, 12.5% to 17.7%). The levels of wet-rot CD for ‘Tahoma’, ‘Newport’, and ‘Columbia’ were comparable to those of some cultivars with more severe foliar disease symptoms (‘Nugget’ and ‘Cascade’). Differences in foliar disease among cultivars with similar levels of rootstock rot suggest a resistance defense mechanism to P. humuli. Additional work is needed to clarify rootstock infection sites and characterize defense responses to aid future breeding efforts.


Plant Disease ◽  
2021 ◽  
Author(s):  
Zhoujie Ma ◽  
Shidao He ◽  
Bo Liu ◽  
Suna Wang ◽  
Yufei Huang ◽  
...  

Northern corn leaf blight (NCLB), caused by Setosphaeria turcica, is an important foliar disease in corn. Since 2005, the damage from NCLB has increased in Northeast China, probably due to the emergence of new physiological races. In this study, 883 single conidial isolates of S. turcica were obtained from 12 sites across three provinces of Northeast China between 2007 and 2017. The virulence of the isolates was evaluated in five corn lines (B37, B37Ht1, B37Ht2, B37Ht3, B37HtN). Sixteen physiological races (0, 1, 2, 3, N, 12, 13, 1N, 23, 2N, 3N, 123, 12N, 13N, 23N, and 123N) were obtained, depending on their resistance or susceptibility. Three races (0, 1, and 2) were most prevalent, with frequencies of 40.5%, 19.6%, and 11.3% in all isolates, respectively. Races varied across provinces and years. Virulence to more than one Ht resistance genes occurred in 21.5% of isolates, with 8.5% virulent to three or more genes. Overall, 41% of isolates were avirulent to all Ht genes, 36% were virulent to Ht1, 28% to Ht2, 11% to Ht3, and 16% to HtN. Isolates from Heilongjiang had a greater frequency of virulence to Ht2 and Ht3, whereas isolates from Jilin and Liaoning were more frequently virulent to Ht1 and HtN, respectively. The frequency of isolate virulence to Ht2 ranged from 8% in 2009 to a maximum of 29% in 2015, and in 2015, isolates were more virulent to Ht2 than Ht1. This study will help growers to purposefully select commercial hybrids with multiple effective Ht resistance genes, and reduce the utilization of Ht1 and Ht2 genes in the process of corn production to strengthen NCLB control.


Sign in / Sign up

Export Citation Format

Share Document