germ cell development
Recently Published Documents


TOTAL DOCUMENTS

407
(FIVE YEARS 72)

H-INDEX

56
(FIVE YEARS 5)

Genes ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 79
Author(s):  
Chaoyue Zhong ◽  
Meifeng Liu ◽  
Yuhao Tao ◽  
Xi Wu ◽  
Yang Yang ◽  
...  

Pluripotency markers Pou5f1 and Nanog are core transcription factors regulating early embryonic development and maintaining the pluripotency and self-renewal of stem cells. Pou5f1 and Nanog also play important roles in germ cell development and gametogenesis. In this study, Pou5f1 (EcPou5f1) and Nanog (EcNanog) were cloned from orange-spotted grouper, Epinephelus coioides. The full-length cDNAs of EcPou5f1 and EcNanog were 2790 and 1820 bp, and encoded 475 and 432 amino acids, respectively. EcPou5f1 exhibited a specific expression in gonads, whereas EcNanog was expressed highly in gonads and weakly in some somatic tissues. In situ hybridization analyses showed that the mRNA signals of EcNanog and EcPou5f1 were exclusively restricted to germ cells in gonads. Likewise, immunohistofluorescence staining revealed that EcNanog protein was limited to germ cells. Moreover, both EcPou5f1 and EcNanog mRNAs were discovered to be co-localized with Vasa mRNA, a well-known germ cell maker, in male and female germ cells. These results implied that EcPou5f1 and EcNanog could be also regarded as reliable germ cell marker genes. Therefore, the findings of this study would pave the way for elucidating the mechanism whereby EcPou5f1 and EcNanog regulate germ cell development and gametogenesis in grouper fish, and even in other protogynous hermaphroditic species.


Biomedicines ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 1884
Author(s):  
Qifan Zhu ◽  
Jane Allyn Kirby ◽  
Chen Chu ◽  
Lan-Tao Gou

Infertility has been reported as one of the most common reproductive impairments, affecting nearly one in six couples worldwide. A large proportion of infertility cases are diagnosed as idiopathic, signifying a deficit in information surrounding the pathology of infertility and necessity of medical intervention such as assisted reproductive therapy. Small noncoding RNAs (sncRNAs) are well-established regulators of mammalian reproduction. Advanced technologies have revealed the dynamic expression and diverse functions of sncRNAs during mammalian germ cell development. Mounting evidence indicates sncRNAs in sperm, especially microRNAs (miRNAs) and transfer RNA (tRNA)-derived small RNAs (tsRNAs), are sensitive to environmental changes and mediate the inheritance of paternally acquired metabolic and mental traits. Here, we review the critical roles of sncRNAs in mammalian germ cell development. Furthermore, we highlight the functions of sperm-borne sncRNAs in epigenetic inheritance. We also discuss evidence supporting sncRNAs as promising biomarkers for fertility and embryo quality in addition to the present limitations of using sncRNAs for infertility diagnosis and treatment.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Jiexiang Zhao ◽  
Ping Lu ◽  
Cong Wan ◽  
Yaping Huang ◽  
Manman Cui ◽  
...  

AbstractMammalian male germ cell development is a stepwise cell-fate transition process; however, the full-term developmental profile of male germ cells remains undefined. Here, by interrogating the high-precision transcriptome atlas of 11,598 cells covering 28 critical time-points, we demonstrate that cell-fate transition from mitotic to post-mitotic primordial germ cells is accompanied by transcriptome-scale reconfiguration and a transitional cell state. Notch signaling pathway is essential for initiating mitotic arrest and the maintenance of male germ cells’ identities. Ablation of HELQ induces developmental arrest and abnormal transcriptome reprogramming of male germ cells, indicating the importance of cell cycle regulation for proper cell-fate transition. Finally, systematic human-mouse comparison reveals potential regulators whose deficiency contributed to human male infertility via mitotic arrest regulation. Collectively, our study provides an accurate and comprehensive transcriptome atlas of the male germline cycle and allows for an in-depth understanding of the cell-fate transition and determination underlying male germ cell development.


Development ◽  
2021 ◽  
Author(s):  
Jessica E. M. Dunleavy ◽  
Anne E. O'Connor ◽  
Hidenobu Okuda ◽  
D. Jo Merriner ◽  
Moira K. O'Bryan

Katanin microtubule severing enzymes are critical executers of microtubule regulation. Here, we have created an allelic loss-of-function series of katanin regulatory B-subunit KATNB1 in mice. We reveal KATNB1 is the master regulator of all katanin enzymatic A-subunits during mammalian spermatogenesis, wherein it is required to maintain katanin A-subunit abundance. Our data shows complete loss of KATNB1 from germ cells is incompatible with sperm production, and we reveal multiple new spermatogenesis functions for KATNB1, including critical roles in male meiosis, in acrosome formation, in sperm tail assembly, in regulating both the Sertoli and germ cell cytoskeletons during sperm nuclear remodelling and in maintaining seminiferous epithelium integrity. Collectively, our findings reveal that katanins are able to differentially regulate almost all key microtubule-based structures during mammalian male germ cell development, through the complexing of one master controller, KATNB1, with a ‘toolbox’ of neofunctionalized katanin A-subunits.


2021 ◽  
Author(s):  
Umair W. Khan ◽  
Phillip A Newmark

Female germ cells develop into oocytes, with the capacity for totipotency. In most animals, these remarkable cells are specified during development and cannot be regenerated. By contrast, planarians, known for their regenerative prowess, can regenerate germ cells. To uncover mechanisms required for female germ cell development and regeneration, we generated gonad-specific transcriptomes and identified genes whose expression defines progressive stages of female germ cell development. Strikingly, early female germ cells share molecular signatures with the pluripotent stem cells driving planarian regeneration. We uncovered spatial heterogeneity within somatic ovarian cells and found that a regionally enriched FoxL homolog is required for oocyte differentiation, but not specification, suggestive of functionally distinct somatic compartments. Unexpectedly, a neurotransmitter-biosynthetic enzyme, AADC, is also expressed in somatic gonadal cells, and plays opposing roles in female and male germ cell development. Thus, somatic gonadal cells deploy conserved factors to regulate germ cell development and regeneration in planarians.


2021 ◽  
Author(s):  
Shuiqiao Yuan ◽  
Shenglei Feng ◽  
Jinmei Li ◽  
Hui Wen ◽  
Kuan Liu ◽  
...  

Abstract Coordinated regulation of alternative pre-mRNA splicing is essential for germ cell development. However, the molecular mechanism underlying that control alternative mRNA expression during germ cell development remains poorly understood. Herein, we showed that hnRNPH1, an RNA-binding protein, is highly expressed in the reproductive system and localized in the chromosomes of meiotic cells but excluded from the XY body in pachytene spermatocytes and recruits the splicing regulators PTBP2 and SRSF3 and cooperatively regulates the alternative splicing of the critical genes that are required for spermatogenesis. Conditional knockout Hnrnph1 in spermatogenic cells caused many abnormal splicing events that affect genes related to meiosis and communication between germ cells and Sertoli cells, characterized by asynapsis of chromosomes and impairment of germ-Sertoli communications, ultimately leading to male sterility. We further showed that hnRNPH1 could directly bind to SPO11 and recruit the splicing regulators PTBP2 and SRSF3 to regulate the alternative splicing of the target genes cooperatively. Strikingly, Hnrnph1 germline-specific mutant female mice were also infertile, and Hnrnph1-deficient oocytes exhibited a similar defective synapsis and cell-cell junction as shown in Hnrnph1-deficient male germ cells. Collectively, our data reveal an essential role for hnRNPH1 in regulating pre-mRNA splicing during spermatogenesis and oogenesis and support a molecular model whereby hnRNPH1 governs a network of alternative splicing events in germ cells via recruiting PTBP2 and SRSF3.


Author(s):  
Marianne Mercer ◽  
Seoyeon Jang ◽  
Chunyang Ni ◽  
Michael Buszczak

The regulation of mRNA translation, both globally and at the level of individual transcripts, plays a central role in the development and function of germ cells across species. Genetic studies using flies, worms, zebrafish and mice have highlighted the importance of specific RNA binding proteins in driving various aspects of germ cell formation and function. Many of these mRNA binding proteins, including Pumilio, Nanos, Vasa and Dazl have been conserved through evolution, specifically mark germ cells, and carry out similar functions across species. These proteins typically influence mRNA translation by binding to specific elements within the 3′ untranslated region (UTR) of target messages. Emerging evidence indicates that the global regulation of mRNA translation also plays an important role in germ cell development. For example, ribosome biogenesis is often regulated in a stage specific manner during gametogenesis. Moreover, oocytes need to produce and store a sufficient number of ribosomes to support the development of the early embryo until the initiation of zygotic transcription. Accumulating evidence indicates that disruption of mRNA translation regulatory mechanisms likely contributes to infertility and reproductive aging in humans. These findings highlight the importance of gaining further insights into the mechanisms that control mRNA translation within germ cells. Future work in this area will likely have important impacts beyond germ cell biology.


2021 ◽  
Author(s):  
Cheruvathoor Varghese Elizabeth ◽  
Sivashanmugam Amirthalingam ◽  
Sreelakshmi Krishnakumar ◽  
Puthiyoth Dayanandan Anoop ◽  
Rangasamy Jayakumar ◽  
...  

2021 ◽  
Vol 109 ◽  
pp. 161-170
Author(s):  
Xiangyang Li ◽  
Yue Zhang ◽  
Xiaomin Dong ◽  
Guiqing Zhou ◽  
Yujian Sang ◽  
...  

2021 ◽  
Author(s):  
Lacy Barton ◽  
Justina Sanny ◽  
Emily P Dawson ◽  
Marcela Nouzova ◽  
Fernando G Noriega ◽  
...  

Germ cells are essential to sexual reproduction. Across the animal kingdom, extracellular isoprenoids, such as retinoic acids (RAs) in vertebrates and juvenile hormones (JHs) in insects, impact the germline lifecycle from meiosis to gametogenesis. Emerging evidence suggests that these bioactive isoprenoids also influence embryonic reproductive development, though the precise functions remain unclear. Here, we investigated the specific molecular pathways by which JHs regulates embryonic germ cell development in Drosophila. With a newly generated in vivo reporter, we find that JH signaling is active in the vicinity of germ cells as they migrate to colonize the somatic gonad. Through a combination of in vivo and in vitro assays, we find that JHs are both necessary and sufficient for primordial germ cell migration through mechanisms independent of canonical nuclear receptor-mediated transcription. These findings reveal that JH is present during Drosophila embryogenesis and that bioactive isoprenoids impact germ cell development earlier than previously appreciated. Interestingly, we find that like JH in Drosophila, RA is sufficient for murine germ cell migration in vitro, suggesting that the impact of bioactive isoprenoids on embryonic germ cell development may be broadly conserved.


Sign in / Sign up

Export Citation Format

Share Document