speeds of sound
Recently Published Documents


TOTAL DOCUMENTS

288
(FIVE YEARS 26)

H-INDEX

43
(FIVE YEARS 3)

2021 ◽  
Vol 118 (19) ◽  
pp. e2024352118
Author(s):  
Eran Amichai ◽  
Yossi Yovel

Animals must encode fundamental physical relationships in their brains. A heron plunging its head underwater to skewer a fish must correct for light refraction, an archerfish shooting down an insect must “consider” gravity, and an echolocating bat that is attacking prey must account for the speed of sound in order to assess its distance. Do animals learn these relations or are they encoded innately and can they adjust them as adults are all open questions. We addressed this question by shifting the speed of sound and assessing the sensory behavior of a bat species that naturally experiences different speeds of sound. We found that both newborn pups and adults are unable to adjust to this shift, suggesting that the speed of sound is innately encoded in the bat brain. Moreover, our results suggest that bats encode the world in terms of time and do not translate time into distance. Our results shed light on the evolution of innate and flexible sensory perception.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Reza Haghbakhsh ◽  
Sona Raeissi ◽  
Ana Rita C. Duarte

AbstractThe urgency of advancing green chemistry from labs and computers into the industries is well-known. The Deep Eutectic Solvents (DESs) are a promising category of novel green solvents which simultaneously have the best advantages of liquids and solids. Furthermore, they can be designed or engineered to have the characteristics desired for a given application. However, since they are rather new, there are no general models available to predict the properties of DESs without requiring other properties as input. This is particularly a setback when screening is required for feasibility studies, since a vast number of DESs are envisioned. For the first time, this study presents five group contribution (GC) and five atomic contribution (AC) models for densities, refractive indices, heat capacities, speeds of sound, and surface tensions of DESs. The models, developed using the most up-to-date databank of various types of DESs, simply decompose the molecular structure into a number of predefined groups or atoms. The resulting AARD% of densities, refractive indices, heat capacities, speeds of sound and surface tensions were, respectively, 1.44, 0.37, 3.26, 1.62, and 7.59% for the GC models, and 2.49, 1.03, 9.93, 4.52 and 7.80% for the AC models. Perhaps, even more importantly for designer solvents, is the predictive capability of the models, which was also shown to be highly reliable. Accordingly, very simple, yet highly accurate models are provided that are global for DESs and needless of any physical property information, making them useful predictive tools for a category of green solvents, which is only starting to show its potentials in green technology.


2021 ◽  
Vol 42 (5) ◽  
Author(s):  
Christian W. Scholz ◽  
Roland Span

AbstractWe report experimental speeds of sound in methanol. Measurements were conducted at temperatures from 233 to 353 K with pressures up to 20 MPa using the double-path length pulse-echo technique. The relative expanded combined uncertainty (k = 2) in measurement was estimated to vary from 0.012 to 0.014%, considering contributions from temperature, pressure, path length calibration, pulse timing, and purity of the sample. Experimental speeds of sound gained in the scope of this work were compared with the equation of state by de Reuck and Craven, as well as with further data from literature.


2021 ◽  
Vol 50 (3) ◽  
pp. 355-388
Author(s):  
Poonam Jangra Darolia ◽  
Sunita Malik ◽  
Sapana Garg ◽  
Renu Chadha ◽  
Vinod Kumar Sharma

Sign in / Sign up

Export Citation Format

Share Document