inductive sensor
Recently Published Documents


TOTAL DOCUMENTS

151
(FIVE YEARS 34)

H-INDEX

15
(FIVE YEARS 3)

Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 261
Author(s):  
Edward Rokicki ◽  
Radoslaw Przysowa ◽  
Jerzy Kotkowski ◽  
Paweł Majewski

Magnetic sensors are widely used in aeroengines and their health management systems, but they are rarely installed in the engine hot section due to the loss of magnetic properties by permanent magnets with increasing temperature. The paper presents and verifies models and design solutions aimed at improving the performance of an inductive sensor for measuring the motion of blades operated at elevated temperatures (200–1000 °C) in high pressure compressors and turbines. The interaction of blades with the sensor was studied. A prototype of the sensor was made, and its tests were carried out on the RK-4 rotor rig for the speed of 7000 rpm, in which the temperature of the sensor head was gradually increased to 1100 °C. The sensor signal level was compared to that of an identical sensor operating at room temperature. The heated sensor works continuously producing the output signal whose level does not change significantly. Moreover, a set of six probes passed an initial engine test in an SO-3 turbojet. It was confirmed that the proposed design of the inductive sensor is suitable for blade health monitoring (BHM) of the last stages of compressors and gas turbines operating below 1000 °C, even without a dedicated cooling system. In real-engine applications, sensor performance will depend on how the sensor is installed and the available heat dissipation capability. The presented technology extends the operating temperature of permanent magnets and is not specific for blade vibration but can be adapted to other magnetic measurements in the hot section of the aircraft engine.


2021 ◽  
Vol 92 (8) ◽  
pp. 085110
Author(s):  
Huan Liu ◽  
Xiaobin Wang ◽  
Changfeng Zhao ◽  
Zehua Wang ◽  
Jian Ge ◽  
...  

Author(s):  
Edward Rokicki ◽  
Radoslaw Przysowa ◽  
Jerzy Kotkowski ◽  
Paweł Majewski

Magnetic sensors are widely used in health management systems for turbomachinery, but their applications in the hot zone are limited due to the loss of magnetic properties by permanent magnets with increasing temperature. The paper presents and verifies models and design solutions aimed at improving the performance of an inductive sensor for measuring the motion of rotating objects operating at elevated temperatures (200-1000C), such as compressor and turbine blades. Physical, analog and mathematical models of the interaction of blades with the sensor were developed. A prototype of the sensor was made and its tests were carried out on the RK-4 rotor rig for the speed of 7000 rpm, in which the temperature of the sensor head was gradually increased to 1100C. The sensor signal level was compared to that of an identical sensor operating at room temperature. The heated sensor works continuously producing the output signal whose level does not change significantly. What is more, a set of six probes passed an initial engine test in an SO-3 turbojet. It was confirmed that the proposed design of the inductive sensor is suitable for blade health monitoring of the last stages of compressors, steam turbines as well as previous generation gas turbines operating below 1000C, even without a dedicated cooling system. In real-engine applications, sensor performance will depend on how the sensor is installed and the available heat dissipation capability


2021 ◽  
Author(s):  
Mykola Grygorovych Mikhalevich ◽  
Dziubenko Oleksandr ◽  
Dmitry Leontiev ◽  
Viktor Bogomolov ◽  
Valeriy Klimenko ◽  
...  

Scilight ◽  
2021 ◽  
Vol 2021 (13) ◽  
pp. 131101
Author(s):  
Mara Johnson-Groh

Author(s):  
Nico Krauter ◽  
Vladimir Galindo ◽  
Thomas Wondrak ◽  
Sven Eckert ◽  
Gunter Gerbeth

Abstract The Eddy Current Flow Meter is a reliable and robust inductive sensor for the measurement of flowrates in liquid metal flows. This kind of sensor is usually being used in pipe flows where the flow is mostly parallel to the sensor axis. When this sensor is used as part of the safety instrumentation above the subassemblies in liquid metal cooled fast reactors, the flow angle may change rapidly according to the conditions within the reactor. In this paper we investigate the performance of the Eddy Current Flow Meter in flows inclined to the sensor axis by numerical simulations as well as model experiments. We demonstrate that the Eddy Current Flow Meter yields reliable results for flow angles up to 30° while the sensitivity of the sensor is significantly reduced for larger angles.


2021 ◽  
Vol 92 (3) ◽  
pp. 035113
Author(s):  
Huan Liu ◽  
Changfeng Zhao ◽  
Xiaobin Wang ◽  
Zehua Wang ◽  
Jian Ge ◽  
...  

2021 ◽  
Vol 70 ◽  
pp. 1-9
Author(s):  
Rohan Munjal ◽  
Farhan Ahmad Sajjad ◽  
Frank Wendler ◽  
Olfa Kanoun

2021 ◽  
pp. 1-1
Author(s):  
Yu Wu ◽  
Fang Wang ◽  
Min Zhao ◽  
Biao Wanga ◽  
Chao Yang

Sign in / Sign up

Export Citation Format

Share Document