reductive evolution
Recently Published Documents


TOTAL DOCUMENTS

73
(FIVE YEARS 16)

H-INDEX

23
(FIVE YEARS 2)

2021 ◽  
Vol 7 (12) ◽  
Author(s):  
Jiayu Li ◽  
Yaqiong Guo ◽  
Dawn M. Roellig ◽  
Na Li ◽  
Yaoyu Feng ◽  
...  

Cryptosporidium spp. are important enteric pathogens in a wide range of vertebrates including humans. Previous comparative analysis revealed conservation in genome composition, gene content, and gene organization among Cryptosporidium spp., with a progressive reductive evolution in metabolic pathways and invasion-related proteins. In this study, we sequenced the genome of zoonotic pathogen Cryptosporidium felis and conducted a comparative genomic analysis. While most intestinal Cryptosporidium species have similar genomic characteristics and almost complete genome synteny, fewer protein-coding genes and some sequence inversions and translocations were found in the C. felis genome. The C. felis genome exhibits much higher GC content (39.6 %) than other Cryptosporidium species (24.3–32.9 %), especially at the third codon position (GC3) of protein-coding genes. Thus, C. felis has a different codon usage, which increases the use of less energy costly amino acids (Gly and Ala) encoded by GC-rich codons. While the tRNA usage is conserved among Cryptosporidium species, consistent with its higher GC content, C. felis uses a unique tRNA for GTG for valine instead of GTA in other Cryptosporidium species. Both mutational pressures and natural selection are associated with the evolution of the codon usage in Cryptosporidium spp., while natural selection seems to drive the codon usage in C. felis. Other unique features of the C. felis genome include the loss of the entire traditional and alternative electron transport systems and several invasion-related proteins. Thus, the preference for the use of some less energy costly amino acids in C. felis may lead to a more harmonious parasite–host interaction, and the strengthened host-adaptation is reflected by the further reductive evolution of metabolism and host invasion-related proteins.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Briardo Llorente ◽  
María Eugenia Segretin ◽  
Estefanía Giannini ◽  
Celina Lobais ◽  
Marcelo E. Juárez ◽  
...  

2021 ◽  
Vol 10 (10) ◽  
Author(s):  
Mastaneh Afshar ◽  
Anja Poehlein ◽  
Bo Söderquist ◽  
Holger Brüggemann

ABSTRACT Staphylococcus saccharolyticus is a human skin bacterium and is occasionally associated with prosthetic joint infections (PJIs). Here, we report the complete genome sequences of two strains that were isolated from shoulder and hip PJIs. The genomes show signs of reductive evolution; around 21% of all coding sequences are inactivated by frameshift mutations.


RNA Biology ◽  
2021 ◽  
Author(s):  
Bruno Faivre ◽  
Murielle Lombard ◽  
Soufyan Fakroun ◽  
Chau-Duy-Tam Vo ◽  
Catherine Goyenvalle ◽  
...  
Keyword(s):  

Virulence ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 951-967
Author(s):  
Marina Farrel Côrtes ◽  
Ana Maria N. Botelho ◽  
Paula Terra Bandeira ◽  
William Mouton ◽  
Cedric Badiou ◽  
...  

2020 ◽  
Author(s):  
Miaoxiao Wang ◽  
Xiaonan Liu ◽  
Yong Nie ◽  
Xiao-Lei Wu

AbstractMicrobes release a wide variety of metabolites to the environment that benefit the whole population, called public goods. Public goods sharing drives adaptive function loss, and allows the rise of metabolic cross-feeding. However, how public goods sharing governs the succession of communities over evolutionary time scales remains unclear. To resolve this issue, we constructed an individual-based model, where an autonomous population that possessed functions to produce three essential public goods, was allowed to randomly lose functions. Simulations revealed that function loss genotypes could evolve from the autonomous ancestor, driven by the selfish public production trade-off at the individual level. These genotypes could then automatically develop to three possible types of interdependent patterns: complete functional division, one-way dependency, and asymmetric functional complementation, which were influenced by function cost and function redundancy. In addition, we found random evolutionary events, i.e., the priority and the relative spatial positioning of genotype emergence, are also important in governing community assembly. Moreover, communities occupied by interdependent patterns exhibited better resistance to environmental perturbation, suggesting such patterns are selectively favored. Our work integrates ecological interactions with evolution dynamics, providing a new perspective to explain how reductive evolution shapes microbial interdependencies and governs the succession of communities.


Author(s):  
Varsha Mathur ◽  
Waldan K Kwong ◽  
Filip Husnik ◽  
Nicholas A T Irwin ◽  
Árni Kristmundsson ◽  
...  

Abstract The phylum Apicomplexa consists largely of obligate animal parasites that include the causative agents of human diseases such as malaria. Apicomplexans have also emerged as models to study the evolution of non-photosynthetic plastids, as they contain a relict chloroplast known as the apicoplast. The apicoplast offers important clues into how apicomplexan parasites evolved from free-living ancestors and can provide insights into reductive organelle evolution. Here, we sequenced the transcriptomes and apicoplast genomes of three deep-branching apicomplexans, Margolisiella islandica, Aggregata octopiana and Merocystis kathae. Phylogenomic analyses show that these taxa, together with Rhytidocystis, form a new lineage of apicomplexans that is sister to the Coccidia and Hematozoa (the lineages including most medically significant taxa). Members of this clade retain plastid genomes and the canonical apicomplexan plastid metabolism. However, the apicoplast genomes of Margolisiella and Rhytidocystis are the most reduced of any apicoplast, are extremely GC-poor, and have even lost genes for the canonical plastidial RNA polymerase. This new lineage of apicomplexans, for which we propose the class Marosporida class nov., occupies a key intermediate position in the apicomplexan phylogeny, and adds a new complexity to the models of stepwise reductive evolution of genome structure and organelle function in these parasites.


BMC Biology ◽  
2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Motoki Kayama ◽  
Jun-Feng Chen ◽  
Takashi Nakada ◽  
Yoshiki Nishimura ◽  
Toshiharu Shikanai ◽  
...  

Abstract Background Plastid electron transport systems are essential not only for photosynthesis but also for dissipating excess reducing power and sinking excess electrons generated by various redox reactions. Although numerous organisms with plastids have lost their photoautotrophic lifestyles, there is a spectrum of known functions of remnant plastids in non-photosynthetic algal/plant lineages; some of non-photosynthetic plastids still retain diverse metabolic pathways involving redox reactions while others, such as apicoplasts of apicomplexan parasites, possess highly reduced sets of functions. However, little is known about underlying mechanisms for redox homeostasis in functionally versatile non-photosynthetic plastids and thus about the reductive evolution of plastid electron transport systems. Results Here we demonstrated that the central component for plastid electron transport systems, plastoquinone/plastoquinol pool, is still retained in a novel strain of an obligate heterotrophic green alga lacking the photosynthesis-related thylakoid membrane complexes. Microscopic and genome analyses revealed that the Volvocales green alga, chlamydomonad sp. strain NrCl902, has non-photosynthetic plastids and a plastid DNA that carries no genes for the photosynthetic electron transport system. Transcriptome-based in silico prediction of the metabolic map followed by liquid chromatography analyses demonstrated carotenoid and plastoquinol synthesis, but no trace of chlorophyll pigments in the non-photosynthetic green alga. Transient RNA interference knockdown leads to suppression of plastoquinone/plastoquinol synthesis. The alga appears to possess genes for an electron sink system mediated by plastid terminal oxidase, plastoquinone/plastoquinol, and type II NADH dehydrogenase. Other non-photosynthetic algae/land plants also possess key genes for this system, suggesting a broad distribution of an electron sink system in non-photosynthetic plastids. Conclusion The plastoquinone/plastoquinol pool and thus the involved electron transport systems reported herein might be retained for redox homeostasis and might represent an intermediate step towards a more reduced set of the electron transport system in many non-photosynthetic plastids. Our findings illuminate a broadly distributed but previously hidden step of reductive evolution of plastid electron transport systems after the loss of photosynthesis.


Sign in / Sign up

Export Citation Format

Share Document