alice collaboration
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 10)

H-INDEX

1
(FIVE YEARS 0)

2021 ◽  
Vol 81 (11) ◽  
Author(s):  
Mubarak Alqahtani ◽  
Michael Strickland

AbstractWe compare predictions of 3+1D quasiparticle anisotropic hydrodynamics (aHydroQP) for a large set of bulk observables with experimental data collected in 5.02 TeV Pb–Pb collisions. We make predictions for identified hadron spectra, identified hadron average transverse momentum, charged particle multiplicity as a function of pseudorapidity, the kaon-to-pion ($$K/\pi $$ K / π ) and proton-to-pion ($$p/\pi $$ p / π ) ratios, identified particle and charged particle elliptic flow, and HBT radii. We compare to data collected by the ALICE collaboration in 5.02 TeV Pb–Pb collisions. We find that, based on available data, these bulk observables are well described by aHydroQP with an assumed initial central temperature of $$T_0=630$$ T 0 = 630  MeV at $$\tau _0 = 0.25$$ τ 0 = 0.25 fm/c and a constant specific shear viscosity of $$\eta /s=0.159$$ η / s = 0.159 , which corresponds to a peak specific bulk viscosity of $$\zeta /s = 0.048$$ ζ / s = 0.048 . In particular, we find that the momentum dependence of the kaon-to-pion ($$K/\pi $$ K / π ) and proton-to-pion ($$p/\pi $$ p / π ) ratios reported recently by the ALICE collaboration are extremely well described by aHydroQP in the 0–5% centrality class.


2021 ◽  
Vol 71 (1) ◽  
pp. 377-402
Author(s):  
L. Fabbietti ◽  
V. Mantovani Sarti ◽  
O. Vázquez Doce

The strong interaction among hadrons has been measured in the past by scattering experiments. Although this technique has been extremely successful in providing information about the nucleon–nucleon and pion–nucleon interactions, when unstable hadrons are considered the experiments become more challenging. In the last few years, the analysis of correlations in the momentum space for pairs of stable and unstable hadrons measured in pp and p+Pb collisions by the ALICE Collaboration at the LHC has provided a new method to investigate the strong interaction among hadrons. In this article, we review the numerous results recently achieved for hyperon–nucleon, hyperon–hyperon, and kaon–nucleon pairs, which show that this new method opens the possibility of measuring the residual strong interaction of any hadron pair.


2021 ◽  
Author(s):  
David Dobrigkeit Chinellato ◽  
Keyword(s):  

2021 ◽  
Author(s):  
Anders Garritt Knospe ◽  
Keyword(s):  

2021 ◽  
Vol 1005 ◽  
pp. 122087
Author(s):  
S. Acharya ◽  
D. Adamová ◽  
A. Adler ◽  
J. Adolfsson ◽  
M.M. Aggarwal ◽  
...  
Keyword(s):  

Author(s):  
Boris E. Grinyuk ◽  
Kyrill A. Bugaev ◽  
Violetta V. Sagun ◽  
Oleksii I. Ivanytskyi ◽  
Dmitry L. Borisyuk ◽  
...  

From the analysis of light (anti)nuclei multiplicities that were measured recently by the ALICE collaboration in Pb+Pb collisions at the center-of-mass collision energy [Formula: see text][Formula: see text]TeV, there arose a highly nontrivial question about the excluded volume of composite particles. Surprisingly, the hadron resonance gas model (HRGM) is able to perfectly describe the light (anti) nuclei multiplicities under various assumptions. Thus, one can consider the (anti)nuclei with a vanishing hard-core radius (as the point-like particles) or with the hard-core radius of proton, but the fit quality is the same for these assumptions. It is clear, however, that such assumptions are unphysical. Hence we obtain a formula for the classical excluded volume of loosely bound light nuclei consisting of A baryons. To implement a new formula into the HRGM, we have to modify the induced surface tension concept to treat the hadrons and (anti)nuclei on the same footing. We perform a thorough analysis of hadronic and (anti)nuclei multiplicities measured by the ALICE collaboration. The HRGM with the induced surface tension allows us to verify different assumptions on the values of hard-core radii and different scenarios of chemical freeze-out of (anti)nuclei. It is shown that the unprecedentedly high quality of fit [Formula: see text] is achieved, if the chemical freeze-out temperature of hadrons is about [Formula: see text][Formula: see text]MeV, while the one for all (anti)nuclei is [Formula: see text][Formula: see text]MeV.


2020 ◽  
Vol 35 (29) ◽  
pp. 2050237
Author(s):  
Khusniddin K. Olimov ◽  
Shakhnoza Z. Kanokova ◽  
Alisher K. Olimov ◽  
Kobil I. Umarov ◽  
Boburbek J. Tukhtaev ◽  
...  

The experimental transverse momentum spectra of the charged pions and kaons, protons and antiprotons, produced at midrapidity in [Formula: see text] collisions at [Formula: see text] and 5.02 TeV, central (0–5%) and peripheral (60–80%) Pb[Formula: see text]+[Formula: see text]Pb collisions at [Formula: see text] TeV, central (0–5%), semicentral (40–50%) and peripheral (80–90%) Pb[Formula: see text]+[Formula: see text]Pb collisions at [Formula: see text] TeV, measured by ALICE collaboration, were analyzed using the Tsallis distribution function as well as Hagedorn formula with the embedded transverse flow. To exclude the influence (on the results) of different available fitting [Formula: see text] ranges in the analyzed collisions, we compare the results obtained from combined (simultaneous) fits of midrapidity spectra of the charged pions and kaons, protons and antiprotons with the above theoretical model functions using the identical fitting [Formula: see text] ranges in [Formula: see text] as well as Pb[Formula: see text]+[Formula: see text]Pb collisions at [Formula: see text] and 5.02 TeV. Using the combined fits with the thermodynamically consistent Tsallis distribution as well as the simple Tsallis distribution without thermodynamical description, it is obtained that the global temperature [Formula: see text] and non-extensivity parameter [Formula: see text] slightly increase (consistently for all the particle types) with an increase in center-of-mass (c.m.) energy [Formula: see text] of [Formula: see text] collisions from 2.76 TeV to 5.02 TeV, indicating that the more violent and faster [Formula: see text] collisions at [Formula: see text] TeV result in a smaller degree of thermalization (higher degree of non-equilibrium) compared to that in [Formula: see text] collisions at [Formula: see text] TeV. The [Formula: see text] values for pions and kaons proved to be very close to each other, whereas [Formula: see text] for protons and antiprotons proved to be significantly lower than that for pions and kaons, that is [Formula: see text]. The results of the combined fits using Hagedorn formula with the embedded transverse flow are consistent with practically no (zero) transverse (radial) flow in [Formula: see text] collisions at [Formula: see text] and 5.02 TeV. Using Hagedorn formula with the embedded transverse flow, it is obtained that the value of the (average) transverse flow velocity increases and the temperature [Formula: see text] decreases with an increase in collision centrality in Pb[Formula: see text]+[Formula: see text]Pb collisions at [Formula: see text] and 5.02 TeV, which is in good agreement with the results of the combined Boltzmann–Gibbs blast-wave fits to the particle spectra in Pb[Formula: see text]+[Formula: see text]Pb collisions at [Formula: see text] and 5.02 TeV in recent works of ALICE collaboration. The temperature [Formula: see text] parameter, which approximates the kinetic freeze-out temperature, was shown to coincide in central (0–5%) Pb[Formula: see text]+[Formula: see text]Pb collisions at [Formula: see text] and 5.02 TeV, which implies, taking into account the results of our previous analysis, that kinetic freeze-out temperature stays practically constant in central heavy-ion collisions in [Formula: see text] GeV energy range.


2019 ◽  
Vol 982 ◽  
pp. 975-984
Author(s):  
S. Acharya ◽  
F.T. Acosta ◽  
D. Adamová ◽  
J. Adolfsson ◽  
M.M. Aggarwal ◽  
...  
Keyword(s):  

2019 ◽  
Vol 214 ◽  
pp. 05032
Author(s):  
Sébastien Binet

In order to meet the challenges of the Run 3 data rates and volumes, the ALICE collaboration is merging the online and offline infrastructures into a common framework: ALICE-O2. O2 is based on FairRoot and FairMQ, a message-based, multi-threaded and multi-process control frame-work. In FairMQ, processes (possibly on different machines) exchange data via message queues either through 0MQ or nanomsg. In turn, this enables developers to write their reconstruction or analysis process in whatever language they choose or deem appropriate for the task at hand, as long as that programming language can send and receive data through these message queues. This paper introduces fer, a Go-based toolkit that interoperates with the C++ toolkit FairMQ, to explore the realm of polyglot distributed frameworks.


Sign in / Sign up

Export Citation Format

Share Document