branch migration
Recently Published Documents


TOTAL DOCUMENTS

200
(FIVE YEARS 21)

H-INDEX

41
(FIVE YEARS 3)

Catalysts ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 34
Author(s):  
Shoji Suzuki ◽  
Norio Kurosawa ◽  
Takeshi Yamagami ◽  
Shunsuke Matsumoto ◽  
Tomoyuki Numata ◽  
...  

Homologous recombination (HR) refers to the process of information exchange between homologous DNA duplexes and is composed of four main steps: end resection, strand invasion and formation of a Holliday junction (HJ), branch migration, and resolution of the HJ. Within each step of HR in Archaea, the helicase-promoting branch migration is not fully understood. Previous biochemical studies identified three candidates for archaeal helicase promoting branch migration in vitro: Hjm/Hel308, PINA, and archaeal long helicase related (aLhr) 2. However, there is no direct evidence of their involvement in HR in vivo. Here, we identified a novel helicase encoded by Saci_0814, isolated from the thermophilic crenarchaeon Sulfolobus acidocaldarius; the helicase dissociated a synthetic HJ. Notably, HR frequency in the Saci_0814-deleted strain was lower than that of the parent strain (5-fold decrease), indicating that Saci_0814 may be involved in HR in vivo. Saci_0814 is classified as an aLhr1 under superfamily 2 helicases; its homologs are conserved among Archaea. Purified protein produced in Escherichia coli showed branch migration activity in vitro. Based on both genetic and biochemical evidence, we suggest that aLhr1 is involved in HR and may function as a branch migration helicase in S. acidocaldarius.


2021 ◽  
Author(s):  
Petr Cejka ◽  
Swagata Halder ◽  
Aurore Sanchez ◽  
Lepakshi Ranjha ◽  
Angelo Taglialatela ◽  
...  

Abstract SMARCAL1, ZRANB3 and HLTF are all required for the remodeling of replication forks upon stress. Using reconstituted reactions, we show that the motor proteins have unequal biochemical capacities, explaining why they have non-redundant functions. Whereas SMARCAL1 uniquely anneals RPA-coated ssDNA, suggesting an initial function in fork reversal, it becomes comparatively inefficient in subsequent branch migration. We also show that low concentrations of RAD51 and the RAD51 paralog complex, RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2), directly stimulate SMARCAL1 and ZRANB3 but not HLTF, providing a mechanism underlying previous cellular data implicating these factors in fork reversal. Upon reversal, RAD51 protects replication forks from degradation by MRE11, DNA2 and EXO1 nucleases. We show that the protective function of RAD51 unexpectedly depends on its binding to double-stranded DNA, and higher RAD51 concentrations are required for DNA protection compared to reversal. Together, we define the non-canonical functions of RAD51 and its paralogs in replication fork reversal and protection.


PLoS Genetics ◽  
2021 ◽  
Vol 17 (8) ◽  
pp. e1009717
Author(s):  
Tahirah Yasmin ◽  
Benura Azeroglu ◽  
Charlotte A. Cockram ◽  
David R. F. Leach

Accurate repair of DNA double-strand breaks (DSBs) is crucial for cell survival and genome integrity. In Escherichia coli, DSBs are repaired by homologous recombination (HR), using an undamaged sister chromosome as template. The DNA intermediates of this pathway are expected to be branched molecules that may include 4-way structures termed Holliday junctions (HJs), and 3-way structures such as D-loops and repair forks. Using a tool creating a site-specific, repairable DSB on only one of a pair of replicating sister chromosomes, we have determined how these branched DNA intermediates are distributed across a DNA region that is undergoing DSB repair. In cells, where branch migration and cleavage of HJs are limited by inactivation of the RuvABC complex, HJs and repair forks are principally accumulated within a distance of 12 kb from sites of recombination initiation, known as Chi, on each side of the engineered DSB. These branched DNA structures can even be detected in the region of DNA between the Chi sites flanking the DSB, a DNA segment not expected to be engaged in recombination initiation, and potentially degraded by RecBCD nuclease action. This is observed even in the absence of the branch migration and helicase activities of RuvAB, RadA, RecG, RecQ and PriA. The detection of full-length DNA fragments containing HJs in this central region implies that DSB repair can restore the two intact chromosomes, into which HJs can relocate prior to their resolution. The distribution of recombination intermediates across the 12kb region beyond Chi is altered in xonA, recJ and recQ mutants suggesting that, in the RecBCD pathway of DSB repair, exonuclease I stimulates the formation of repair forks and that RecJQ promotes strand-invasion at a distance from the recombination initiation sites.


Author(s):  
Jasvinder S. Ahuja ◽  
Catherine S. Harvey ◽  
David L. Wheeler ◽  
Michael Lichten

2021 ◽  
Author(s):  
Jasvinder S Ahuja ◽  
Catherine S Harvey ◽  
David L Wheeler ◽  
Michael Lichten

Currently favored models for meiotic recombination posit that both noncrossover and crossover recombination are initiated by DNA double strand breaks but form by different mechanisms, noncrossovers by synthesis dependent strand annealing, and crossovers by formation and resolution of double Holliday junctions centered around the break. This dual mechanism hypothesis predicts different hybrid DNA patterns in noncrossover and crossover recombinants. We show that these predictions are not upheld, by mapping with unprecedented resolution, parental strand contributions to recombinants at a model locus. Instead, break repair in both noncrossovers and crossovers involves synthesis-dependent strand annealing, often with multiple rounds of strand invasion. Crossover-specific double Holliday junction formation occurs via processes that involve branch migration as an integral feature and that can be separated from break repair itself. These findings reveal meiotic recombination to be a highly dynamic process and prompt a new view of the relationship between crossover and noncrossover recombination.


2020 ◽  
Vol 1134 ◽  
pp. 28-33
Author(s):  
Xiaofeng Tang ◽  
Na Chen ◽  
Ruijie Liu ◽  
Qingyi Hu ◽  
Na Liu ◽  
...  

Author(s):  
Olga M. Mazina ◽  
Alexander V. Mazin

Sign in / Sign up

Export Citation Format

Share Document