organic degradation
Recently Published Documents


TOTAL DOCUMENTS

100
(FIVE YEARS 32)

H-INDEX

24
(FIVE YEARS 6)

Chemosphere ◽  
2021 ◽  
pp. 133037
Author(s):  
Hamed Vafaei Molamahmood ◽  
Wei Geng ◽  
Yan Wei ◽  
Jie Miao ◽  
Shiqin Yu ◽  
...  

2021 ◽  
Vol 2117 (1) ◽  
pp. 012034
Author(s):  
A Sato ◽  
A Widjaja ◽  
Soeprijanto

Abstract This study presents the results of hydrothermal pretreatment of rice straw on its ability to improve the biogas production process in anaerobic digesters. Hydrothermal treatment on rice straw biomass was carried out with the addition of 0%, 3% and 5% NaOH (w/w rice straw) for one hour at a temperature of 140 °C. This study showed that hydrothermal and alkaline hydrothermal pretreatments were able to increase organic degradation of rice straw as indicated by an increase in the dissolution of lignin and hemicellulose from rice straw. Temperature and NaOH worked synergistically to dissolve lignocellulose in the hydrothermal pretreatment process. In the semicontinuous digester fed with pretreated rice straw, NaOH content in the pretreatment stage was found to give significant effect in enhancing biogas production. Average daily biogas production by the untreated rice straw, hydrothermal pretreated without NaOH addition, hydrothermally treated rice straw with 3% NaOH and 5% NaOH was 23.9, 57.1, 95.8 and 108.8 L/kg rice straw, respectively.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2698
Author(s):  
Saerom Park ◽  
Sungjik Oh ◽  
Ilho Kim

The effects of borate ions on the reactivity of peroxymonosulfate (PMS) during organic degradation in the presence of metal oxides were examined. The metal oxides exhibited catalytic abilities for the degradation of carbamazepine (CBZ) but not for phenol (PN). Scavenging experiments revealed the absence of radical generation during PN degradation in the presence of the various metal oxides and borate buffer. This indicated that the borate buffer hindered the catalytic abilities of the metal oxides for producing radicals via the PMS oxidant, especially during the faster degradation of compounds such as PN. Various concentrations of borate ions were assessed for enabling pH control and permitting catalytic activity. Fe2O3 was found to accelerate and inhibit PN degradation at borate-ion concentrations of 2 mM and 5–20 mM, respectively. Only the 20 mM borate-ion solutions were successful at maintaining the initial pH for 2 d. Phosphate buffer, which was examined as an alternative, also disrupted radical formation but not as considerably as that of the borate ions with metal oxides. This study demonstrates the significance of enabling pH control and permitting the catalytic activity for ensuring the effective use of oxyanions as buffers.


2021 ◽  
Author(s):  
Yani Hua ◽  
Chuan Wang ◽  
Sha Wang ◽  
Juan Xiao

Abstract Fe3O4 magnetic nanoparticles (MNPs) have been widely used as a recyclable catalyst in Fenton reaction for organic degradation. However, the pristine MNPs suffer from the drawbacks of iron leaching in acidic conditions as well as the decreasing catalytic activity of organic degradation at a pH higher than 3.0. To solve the problems, Fe3O4 MNPs were modified by poly(catechol) (Fe3O4/PCC MNPs) using a facile chemical co-precipitation method. The poly(catechol) modification improved both the dispersity and the surface negative charges of Fe3O4/PCC MNPs, which are beneficial to the catalytic activity of MNPs for organics degradation. Moreover, the poly(catechol) modification enhanced the efficiency of Fe(II) regeneration during Fenton reaction due to the acceleration of Fe(III) reduction by the phenolic/quinonoid redox pair. As a result, the Fenton reaction with Fe3O4/PCC MNPs could efficiently degrade organic molecules, exampled by methylene blue (MB), in an expanded pH range between 3.0 and 10.0. In addition, Fe3O4/PCC MNPs could be reused up to 8 cycles for the MB degradation with negligible iron leaching of lower than 1.5 mg L-1. This study demonstrated Fe3O4/PCC MNPs are a promising heterogeneous Fenton catalysts for organic degradation.


2021 ◽  
Vol 11 (10) ◽  
pp. 4539
Author(s):  
Fu-Ping Wang ◽  
Tian-Ji Liu ◽  
Shuang Cai ◽  
Di Gao ◽  
Qing Yu ◽  
...  

As a by-product of the iron and steel industry, steel slag is rich in catalytically active substances and can therefore be used as a solid catalyst. Many studies have shown that the application potential of steel slag in catalysis is huge, which provides new development space for its application, thereby increasing its additional utilization value. This article primarily reviews the research progress in catalytic fields such as catalytic pyrolysis, organic degradation, electrocatalysis, photocatalysis, transesterification, and carbon capture and storage, as well as the modification methods of steel slag. The catalytic performance of the modified steel slag has been further improved, and it has the meaningful characteristics of high efficiency, cleanliness, and low costs.


Sign in / Sign up

Export Citation Format

Share Document