actinide elements
Recently Published Documents


TOTAL DOCUMENTS

312
(FIVE YEARS 12)

H-INDEX

35
(FIVE YEARS 2)

2022 ◽  
Vol 29 (1) ◽  
Author(s):  
Cyril Zurita ◽  
Satoru Tsushima ◽  
Pier Lorenzo Solari ◽  
Aurélie Jeanson ◽  
Gaëlle Creff ◽  
...  

Ferritin is the main protein of Fe storage in eukaryote and prokaryote cells. It is a large multifunctional, multi-subunit protein consisting of heavy H and light L subunits. In the field of nuclear toxicology, it has been suggested that some actinide elements, such as thorium and plutonium at oxidation state +IV, have a comparable `biochemistry' to iron at oxidation state +III owing to their very high tendency for hydrolysis and somewhat comparable ionic radii. Therefore, the possible mechanisms of interaction of such actinide elements with the Fe storage protein is a fundamental question of bio-actinidic chemistry. We recently described the complexation of Pu(IV) and Th(IV) with horse spleen ferritin (composed mainly of L subunits). In this article, we bring another viewpoint to this question by further combining modeling with our previous EXAFS data for Pu(IV) and Th(IV). As a result, the interaction between the L subunits and both actinides appears to be non-specific but driven only by the density of the presence of Asp and Glu residues on the protein shell. The formation of an oxyhydroxide Th or Pu core has not been observed under the experimental conditions here, nor the interaction of Th or Pu with the ferric oxyhydroxide core.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Richard M. Essex ◽  
Lav Tandon ◽  
Amy Gaffney ◽  
Cole R. Hexel ◽  
Debbie A. Bostick ◽  
...  

Abstract Two plutonium oxides were prepared as unique reference materials for measurement of actinide elements present as trace constituents. Each reference material unit is approximately 200 mg of PuO2 powder in a quartz glass bottle. Characterized attributes of the oxides included mass fractions of plutonium, americium, neptunium, and uranium. Isotope-amount ratios were also determined for plutonium and uranium, but neptunium and americium were observed to be monoisotopic 237Np and 241Am. Measurements for characterization and verification of the attributes show that plutonium and trace actinides are homogeneous with the exception of limited heterogeneity for uranium, primarily observed for the 238U isotope. Model purification ages calculated from measured americium and uranium attribute values are consistent with material histories and indicate that these impurities are predominantly due to the decay of plutonium isotopes.


2021 ◽  
Vol 9 ◽  
Author(s):  
Timothy Connor ◽  
Oskar Cheong ◽  
Thomas Bornhake ◽  
Alison C. Shad ◽  
Rebekka Tesch ◽  
...  

Pyrochlore compounds (A2B2O7) have a large applicability in various branches of science and technology. These materials are considered for use as effective ionic conductors for solid state batteries or as matrices for immobilization of actinide elements, amongst many other applications. In this contribution we discuss the simulation-based effort made in the Institute of Energy and Climate Research at Forschungszentrum Jülich and partner institutions regarding reliable computation of properties of pyrochlore and defect fluorite compounds. In the scope of this contribution, we focus on the investigation of dopant incorporation, defect formation and anion migration, as well as understanding of order-disorder transitions in these compounds. We present new, accurate simulated data on incorporation of U, Np, Pu, Am and Cm actinide elements into pyrochlores, activation energies for oxygen migration and radiation damage-induced structural changes in these materials. All the discussed simulation results are combined with available experimental data to provide a reliable description of properties of investigated materials. We demonstrate that a synergy of computed and experimental data leads to a superior characterization of pyrochlores, which could not be easily achieved by either of these methods when applied separately.


2020 ◽  
pp. 989-1009
Author(s):  
Anthony Peter Gordon Shaw
Keyword(s):  

Author(s):  
Rudy J.M. Konings ◽  
Ondřej Beneš ◽  
Jean-Christophe Griveau
Keyword(s):  

2019 ◽  
Vol 9 (23) ◽  
pp. 5020 ◽  
Author(s):  
Babak Sadigh ◽  
Andrey Kutepov ◽  
Alexander Landa ◽  
Per Söderlind

Density functional theory (DFT) calculations are employed to explore and assess the effects of the relativistic spin–orbit interaction and electron correlations in the actinide elements. Specifically, we address electron correlations in terms of an intra-atomic Coulomb interaction with a Hubbard U parameter (DFT + U). Contrary to recent beliefs, we show that for the ground-state properties of the light actinide elements Th to Pu, the DFT + U makes its best predictions for U = 0. Actually, our modeling suggests that the most popular DFT + U formulation leads to the wrong ground-state phase for plutonium. Instead, extending DFT and the generalized gradient approximation (GGA) with orbital–orbital interaction (orbital polarization; OP) is the most accurate approach. We believe the confusion in the literature on the subject mostly originates from incorrectly accounting for the spin–orbit (SO) interaction for the p1/2 state, which is not treated in any of the widely used pseudopotential plane-wave codes. Here, we show that for the actinides it suffices to simply discard the SO coupling for the p states for excellent accuracy. We thus describe a formalism within the projector-augmented-wave (PAW) scheme that allows for spin–orbit coupling, orbital polarization, and non-collinear magnetism, while retaining an efficient calculation of Hellmann–Feynman forces. We present results of the ground-state phases of all the light actinide metals (Th to Pu). Furthermore, we conclude that the contribution from OP is generally small, but substantial in plutonium.


2019 ◽  
Vol 107 (9-11) ◽  
pp. 965-977
Author(s):  
Yoshikazu Koma ◽  
Erina Murakami

Abstract The Fukushima Daiichi Nuclear Power Station, which is owned by the Tokyo Electric Power Company, was damaged by the great earthquake and tsunami on March 11, 2011, and serious contamination due to radioactive nuclides occurred. To investigate the waste management methodologies, contaminated materials were radiochemically analyzed. This paper reviews the analytical data concerning actinide elements. Contaminated water has accumulated in the basement of the reactor and other buildings, and actinide nuclides have been detected in this water. Actinides first get dissolved into the water inside the primary containment vessel, and then their concentration in the water decreases to a certain level with further flow. The contaminated water is chemically decontaminated; however, the actinide concentration does not decrease with time. This suggests that the actinides are continuously being supplied by the damaged fuel via slow dissolution. The dissolved transuranic (TRU) nuclides are recovered in the precipitate via a chemical treatment and are mostly removed from the water. Pu, Am, and Cm were detected in the topsoil at the site and appear to originate from the damaged fuel, whereas the detected U originates from natural sources. TRU nuclides slowly move in soil to deeper layers. The contamination of the rubble is nonuniform, and actinides are detected as well as fission products. Inside the reactor building of unit #2, the TRU nuclide concentration is comparatively higher near the boundary of the primary containment vessel, which experienced a fault during the accident. As for the vegetation, TRU nuclides were only found in fallen leaves near the reactor buildings.


Sign in / Sign up

Export Citation Format

Share Document