circuit function
Recently Published Documents


TOTAL DOCUMENTS

362
(FIVE YEARS 175)

H-INDEX

31
(FIVE YEARS 7)

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zachary L. Newman ◽  
Dariya Bakshinskaya ◽  
Ryan Schultz ◽  
Samuel J. Kenny ◽  
Seonah Moon ◽  
...  

AbstractNeural circuit function depends on the pattern of synaptic connections between neurons and the strength of those connections. Synaptic strength is determined by both postsynaptic sensitivity to neurotransmitter and the presynaptic probability of action potential evoked transmitter release (Pr). Whereas morphology and neurotransmitter receptor number indicate postsynaptic sensitivity, presynaptic indicators and the mechanism that sets Pr remain to be defined. To address this, we developed QuaSOR, a super-resolution method for determining Pr from quantal synaptic transmission imaging at hundreds of glutamatergic synapses at a time. We mapped the Pr onto super-resolution 3D molecular reconstructions of the presynaptic active zones (AZs) of the same synapses at the Drosophila larval neuromuscular junction (NMJ). We find that Pr varies greatly between synapses made by a single axon, quantify the contribution of key AZ proteins to Pr diversity and find that one of these, Complexin, suppresses spontaneous and evoked transmission differentially, thereby generating a spatial and quantitative mismatch between release modes. Transmission is thus regulated by the balance and nanoscale distribution of release-enhancing and suppressing presynaptic proteins to generate high signal-to-noise evoked transmission.


Nature ◽  
2022 ◽  
Author(s):  
Ewoud R. E. Schmidt ◽  
Hanzhi T. Zhao ◽  
Jung M. Park ◽  
Mario Dipoppa ◽  
Mauro M. Monsalve-Mercado ◽  
...  

2022 ◽  
Vol 23 (1) ◽  
pp. 559
Author(s):  
Iris Stoltenborg ◽  
Fiona Peris-Sampedro ◽  
Erik Schéle ◽  
Marie V. Le May ◽  
Roger A. H. Adan ◽  
...  

The availability of Cre-based mouse lines for visualizing and targeting populations of hormone-sensitive cells has helped identify the neural circuitry driving hormone effects. However, these mice have limitations and may not even be available. For instance, the development of the first ghrelin receptor (Ghsr)-IRES-Cre model paved the way for using the Cre-lox system to identify and selectively manipulate ghrelin-responsive populations. The insertion of the IRES-Cre cassette, however, interfered with Ghsr expression, resulting in defective GHSR signaling and a pronounced phenotype in the homozygotes. As an alternative strategy to target ghrelin-responsive cells, we hereby utilize TRAP2 (targeted recombination in active populations) mice in which it is possible to gain genetic access to ghrelin-activated populations. In TRAP2 mice crossed with a reporter strain, we visualized ghrelin-activated cells and found, as expected, much activation in the arcuate nucleus (Arc). We then stimulated this population using a chemogenetic approach and found that this was sufficient to induce an orexigenic response of similar magnitude to that induced by peripheral ghrelin injection. The stimulation of this population also impacted food choice. Thus, the TRAPing of hormone-activated neurons (here exemplified by ghrelin-activated pathways) provides a complimentary/alternative technique to visualize, access and control discrete pathways, linking hormone action to circuit function.


Biology ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 81
Author(s):  
Sebastian Curti ◽  
Federico Davoine ◽  
Antonella Dapino

Electrical transmission between neurons is largely mediated by gap junctions. These junctions allow the direct flow of electric current between neurons, and in mammals, they are mostly composed of the protein connexin36. Circuits of electrically coupled neurons are widespread in these animals. Plus, experimental and theoretical evidence supports the notion that, beyond synchronicity, these circuits are able to perform sophisticated operations such as lateral excitation and inhibition, noise reduction, as well as the ability to selectively respond upon coincident excitatory inputs. Although once considered stereotyped and unmodifiable, we now know that electrical synapses are subject to modulation and, by reconfiguring neural circuits, these modulations can alter relevant operations. The strength of electrical synapses depends on the gap junction resistance, as well as on its functional interaction with the electrophysiological properties of coupled neurons. In particular, voltage and ligand gated channels of the non-synaptic membrane critically determine the efficacy of transmission at these contacts. Consistently, modulatory actions on these channels have been shown to represent relevant mechanisms of plasticity of electrical synaptic transmission. Here, we review recent evidence on the regulation of electrical synapses of mammals, the underlying molecular mechanisms, and the possible ways in which they affect circuit function.


Author(s):  
Sebastian Curti ◽  
Federico Davoine ◽  
Antonella Dapino

Electrical transmission between neurons is largely mediated by gap junctions. These junctions allow the direct flow of electric current between neurons, and in mammals are mostly composed of the protein connexin (Cx)36. Circuits of electrically coupled neurons are widespread in these animals, plus, experimental and theoretical evidence supports the notion that, beyond synchronicity, these circuits are able to perform sophisticated operations like lateral excitation and inhibition, noise reduction, as well as the ability to selectively respond upon coincident excitatory inputs. Although once considered stereotyped and unmodifiable, we now know that electrical synapses are subject to modulation and, by reconfiguring neural circuits, these modulations can alter relevant operations. The strength of electrical synapses depends on gap junction conductance, as well as on its functional interaction with the electrophysiological properties of coupled neurons. In particular, voltage dependent channels of the non-synaptic membrane critically determine the efficacy of transmission at these contacts. Consistently, modulatory actions on these channels have been shown to represent relevant mechanisms of plasticity of electrical synaptic transmission. Here we review recent evidence on the regulation of electrical synapses of mammals, the underlying molecular mechanisms, and the possible ways in which they affect circuit function.


2021 ◽  
Author(s):  
Jonas-Frederic Sauer ◽  
Marlene Bartos

AbstractWe interrogated prefrontal circuit function in mice lacking Disrupted-in-schizophrenia-1 (Disc1-mutant mice), a risk factor for psychiatric disorders. Single-unit recordings in awake mice revealed reduced average firing rates of fast-spiking interneurons (INTs), including optogenetically identified parvalbumin-positive cells, and a lower proportion of INTs phase-coupled to ongoing gamma oscillations. Moreover, we observed decreased spike transmission efficacy at local pyramidal cell (PYR)-INT connections in vivo, suggesting a reduced excitatory effect of local glutamatergic inputs as a potential mechanism of lower INT rates. On the network level, impaired INT function resulted in altered activation of PYR assemblies: While assembly activations were observed equally often, the expression strength of individual assembly patterns was significantly higher in Disc1-mutant mice. Our data thus reveal a role of Disc1 in shaping the properties of prefrontal assembly patterns by setting prefrontal INT responsiveness to glutamatergic drive.


2021 ◽  
Vol 15 ◽  
Author(s):  
Yunuen Moreno-López ◽  
Edmund R. Hollis

Restoring sensory circuit function after spinal cord injury (SCI) is essential for recovery of movement, yet current interventions predominantly target motor pathways. Integrated cortical sensorimotor networks, disrupted by SCI, are critical for perceiving, shaping, and executing movement. Corticocortical connections between primary sensory (S1) and motor (M1) cortices are critical loci of functional plasticity in response to learning and injury. Following SCI, in the motor cortex, corticocortical circuits undergo dynamic remodeling; however, it remains unknown how rehabilitation shapes the plasticity of S1-M1 networks or how these changes may impact recovery of movement.


2021 ◽  
Author(s):  
Sonja A Zolnoski ◽  
Emily L Heckman ◽  
Chris Q Doe ◽  
Sarah D Ackerman

Early stages of the devastating neurodegenerative disease amyotrophic lateral sclerosis (ALS) are characterized by motor neuron hyperexcitability. During this phase, peri-synaptic astrocytes are neuroprotective. When reactive, loss of wild-type astrocyte functions results in excitotoxicity. How astrocytes stabilize motor circuit function in early-stage ALS is poorly understood. Here, we used Drosophila motor neurons to define the role of astrocyte-motor neuron metabolic coupling in a model of ALS: astrocyte knockdown of the ALS-causing gene tbph/TARDBP. In wild-type, astrocyte mitochondria were dynamically trafficked towards active motor dendrites/synapses to meet local metabolic demand. Knockdown of tbph in astrocytes resulted in motor neuron hyperexcitability, reminiscent of early-stage ALS, which was met with a compensatory accumulation of astrocyte mitochondria near motor dendrites/synapses. Finally, we blocked mitochondria-synapse association in tbph knockdown animals and observed locomotor deficits and synapse loss. Thus, synapse-associated astrocyte mitochondria stabilize motor circuits to prevent the transition from hyperexcitability to excitotoxicity.


2021 ◽  
Author(s):  
Caroline J Smith ◽  
Tania Lintz ◽  
Madeline J. Clark ◽  
Karen E. Malacon ◽  
Nicolas Constantino ◽  
...  

The current opioid epidemic has dramatically increased the number of children who are prenatally exposed to opioids, including oxycodone. However, little is know about the mechanisms by which prenatal opioid exposure leads to long term changes in reward circuit function and behavior. Microglia, the resident immune cells of the brain, are known to respond to perinatal opioid exposure and to sculpt neural circuits during development. Indeed, we recently found that microglial phagocytosis of dopamine D1 receptors in the nucleus accumbens (NAc) is required for the natural development decline in NAc-D1R that occurs between adolescence and adulthood. Morever, this microglial pruning occurs only in males, and is required for the normal developmental trajectory of social play behavior. Here, we show that maternal oxycodone self-administration during pregnancy leads to higher D1R density within the NAc in adult male, but not female, offspring in rats. Furthermore, adolescent microglial phagocytosis of D1R is reduced following prenatal oxycodone exposure. Ths work demonstrates for the first time that microglia play a key role in translating prenatal opioid exposure to long-term changes in neural systems.


Sign in / Sign up

Export Citation Format

Share Document