overlapping generations
Recently Published Documents


TOTAL DOCUMENTS

1073
(FIVE YEARS 135)

H-INDEX

49
(FIVE YEARS 4)

2021 ◽  
Vol 288 (1965) ◽  
Author(s):  
Thomas J. Hitchcock ◽  
Andy Gardner

Recent years have seen an explosion of theoretical and empirical interest in the role that kin selection plays in shaping patterns of sexual conflict, with a particular focus on male harming traits. However, this work has focused solely on autosomal genes, and as such it remains unclear how demography modulates the evolution of male harm loci occurring in other portions of the genome, such as sex chromosomes and cytoplasmic elements. To investigate this, we extend existing models of sexual conflict for application to these different modes of inheritance. We first analyse the general case, revealing how sex-specific relatedness, reproductive value and the intensity of local competition combine to determine the potential for male harm. We then analyse a series of demographically explicit models, to assess how dispersal, overlapping generations, reproductive skew and the mechanism of population regulation affect sexual conflict across the genome, and drive conflict between nuclear and cytoplasmic genes. We then explore the effects of sex biases in these demographic parameters, showing how they may drive further conflicts between autosomes and sex chromosomes. Finally, we outline how different crossing schemes may be used to identify signatures of these intragenomic conflicts.


2021 ◽  
Vol 10 (1) ◽  
pp. 36
Author(s):  
Yasuhito Tanaka

Recently, a school of thought called Modern Monetary Theory (MMT) has been attracting attention, but it has not received much theoretical or mathematical analysis. In this paper, we examine the theoretical validity of the MMT argument using an overlapping generations (OLG) model that includes economic growth due to population growth, and give a generally positive evaluation of MMT. The basic idea is that a certain level of continuous budget deficit is necessary to maintain full employment when the economy is growing, that inflation occurs when the budget deficit exceeds that level, that a recession occurs when the budget deficit falls below that level, and involuntary unemployment occurs. In order to recover from a recession, a budget deficit in excess of that level is required, and that deficit need not be covered by a future budget surplus. The same can be said for growth resulting from technological progress.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hung-Ju Chen ◽  
Koichi Miyazaki

Abstract This study analytically investigates the effects of pay-as-you-go social security and educational subsidies on the fertility rate, retirement age, and GDP per capita growth rate in an overlapping generations model, where parents invest resources toward their children’s human capital. We find that an old agent retires fully when his or her labor productivity is low and retires later when the labor productivity is high. Under the unique balanced-growth-path (BGP) equilibrium, when an old agent is still engaged in work, tax rates are neutral to the fertility rate, higher tax rates encourage him or her to retire earlier, a higher social security tax rate depresses the GDP per capita growth rate, and a higher tax rate for educational subsidies can accelerate growth. However, when an old agent fully retires, higher tax rates increase the fertility rate, a higher social security tax rate lowers the GDP per capita growth rate, and a higher tax rate for educational subsidies boosts growth. Additionally, if an old agent’s labor productivity increases, the fertility rate also increases. We also conduct numerical simulations and analyze how an old agent’s labor productivity affects the retirement age, fertility rate, and GDP per capita growth rate under the BGP equilibrium.


2021 ◽  
Vol 43 (4) ◽  
Author(s):  
Stefano Giaimo

AbstractBoth Medawar and Hamilton contributed key ideas to the modern evolutionary theory of ageing. In particular, they both suggested that, in populations with overlapping generations, the force with which selection acts on traits declines with the age at which traits are expressed. This decline would eventually cause ageing to evolve. However, the biological literature diverges on the relationship between Medawar’s analysis of the force of selection and Hamilton’s. Some authors appear to believe that Hamilton perfected Medawar’s insightful, yet ultimately erroneous analysis of this force, while others see Hamilton’s analysis as a coherent development of, or the obvious complement to Medawar’s. Here, the relationship between the two analyses is revisited. Two things are argued for. First, most of Medawar’s alleged errors that Hamilton would had rectified seem not to be there. The origin of these perceived errors appears to be in a misinterpretation of Medawar’s writings. Second, the mathematics of Medawar and that of Hamilton show a significant overlap. However, different meanings are attached to the same mathematical expression. Medawar put forth an expression for the selective force on age-specific fitness. Hamilton proposed a full spectrum of selective forces each operating on age-specific fitness components, i.e. mortality and fertility. One of Hamilton’s expressions, possibly his most important, is of the same form as Medawar’s expression. But Hamilton’s selective forces on age-specific fitness components do not add up to yield Medawar’s selective force on age-specific fitness. It is concluded that Hamilton’s analysis should be considered neither as a correction to Medawar’s analysis nor as its obvious complement.


2021 ◽  
Author(s):  
Karl Farmer

Thus far involuntary unemployment does not occur in Diamond-type Overlapping Generations models. In line with Keynesian macroeconomics, involuntary unemployment is traced back to aggregate demand failures. While macro-economists majority refers aggregate demand failures to sticky prices, a minority attributes lacking aggregate demand to not perfectly flexible aggregate investment. The chapter investigates how an independent aggregate investment function causes involuntary unemployment under perfectly flexible competitive wage and interest rates in a Diamond-type neoclassical growth model with public debt and human capital accumulation. Moreover, it is shown that a higher public debt to output ratio enhances output growth and reduces involuntary unemployment.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Serik Sagitov

Abstract A properly scaled critical Galton–Watson process converges to a continuous state critical branching process ξ ⁢ ( ⋅ ) \xi(\,{\cdot}\,) as the number of initial individuals tends to infinity. We extend this classical result by allowing for overlapping generations and considering a wide class of population counts. The main result of the paper establishes a convergence of the finite-dimensional distributions for a scaled vector of multiple population counts. The set of the limiting distributions is conveniently represented in terms of integrals ( ∫ 0 y ξ ⁢ ( y - u ) ⁢ d u γ \int_{0}^{y}\xi(y-u)\,du^{\gamma} , y ≥ 0 y\geq 0 ) with a pertinent γ ≥ 0 \gamma\geq 0 .


2021 ◽  
Author(s):  
Marlee R. Labroo ◽  
Jessica E. Rutkoski

Background: Recurrent selection is a foundational breeding method for quantitative trait improvement. It typically features rapid breeding cycles that can lead to high rates of genetic gain. In recurrent phenotypic selection, generations do not overlap, which means that breeding candidates are evaluated and considered for selection for only one cycle. With recurrent genomic selection, candidates can be evaluated based on genomic estimated breeding values indefinitely, therefore facilitating overlapping generations. Candidates with true high breeding values that were discarded in one cycle due to underestimation of breeding value could be identified and selected in subsequent cycles. The consequences of allowing generations to overlap in recurrent selection are unknown. We assessed whether maintaining overlapping and discrete generations led to differences in genetic gain for phenotypic, genomic truncation, and genomic optimum contribution recurrent selection by simulation of traits with various heritabilities and genetic architectures across fifty breeding cycles. We also assessed differences of overlapping and discrete generations in a conventional breeding scheme with multiple stages and cohorts. Results: With phenotypic selection, overlapping generations led to decreased genetic gain compared to discrete generations due to increased selection error bias. Selected individuals, which were in the upper tail of the distribution of phenotypic values, tended to also have high absolute error relative to their true breeding value compared to the overall population. Without repeated phenotyping, these erroneously outlying individuals were repeatedly selected across cycles, leading to decreased genetic gain. With genomic truncation selection, overlapping and discrete generations performed similarly as updating breeding values precluded repeatedly selecting individuals with inaccurately high estimates of breeding values in subsequent cycles. Overlapping generations did not outperform discrete generations in the presence of a positive genetic trend with genomic truncation selection, as past generations had lower mean genetic values than the current generation of selection candidates. With genomic optimum contribution selection, overlapping and discrete generations performed similarly, but overlapping generations slightly outperformed discrete generations in the long term if the targeted inbreeding rate was extremely low. Conclusions: Maintaining discrete generations in recurrent phenotypic mass selection leads to increased genetic gain, especially at low heritabilities, by preventing selection error bias. With genomic truncation selection and genomic optimum contribution selection, genetic gain does not differ between discrete and overlapping generations assuming non-genetic effects are not present. Overlapping generations may increase genetic gain in the long term with very low targeted rates of inbreeding in genomic optimum contribution selection.


Sign in / Sign up

Export Citation Format

Share Document