lymphatic function
Recently Published Documents


TOTAL DOCUMENTS

186
(FIVE YEARS 54)

H-INDEX

31
(FIVE YEARS 6)

2021 ◽  
Vol Publish Ahead of Print ◽  
Author(s):  
William Ambler ◽  
Laura Santambrogio ◽  
Theresa T. Lu
Keyword(s):  

Development ◽  
2021 ◽  
Author(s):  
Phillip S. Ang ◽  
Matt J. Matrongolo ◽  
Max A. Tischfield

Skull malformations are associated with vascular anomalies that can impair fluid balance in the central nervous system. We previously reported that humans with craniosynostosis and mutations in TWIST1 have dural venous sinus malformations. It is still unknown whether meningeal lymphatic networks, which are patterned alongside the venous sinuses, are also affected. We now show that the growth and expansion of meningeal lymphatics are perturbed in Twist1 craniosynostosis models. Changes to the local meningeal environment, including hypoplastic dura and venous malformations, affect the ability of lymphatic networks to sprout and remodel. Dorsal networks along the transverse sinus are hypoplastic with reduced branching. By contrast, basal networks closer to the skull base are more variably affected, showing exuberant growth in some animals suggesting they are compensating for vessel loss in dorsal networks. Injecting a molecular tracer into cerebrospinal fluid reveals significantly less drainage to the deep cervical lymph nodes, indicative of impaired lymphatic function. Collectively, our results show that meningeal lymphatic networks are affected in craniosynostosis, suggesting the clearance of beta-amyloid and waste from the central nervous system may be impeded.


2021 ◽  
Author(s):  
Barbara D. Summers ◽  
Kihwan Kim ◽  
Zohaib Khan ◽  
Sangeetha Thangaswamy ◽  
Cristina C. Clement ◽  
...  

The lymphatic vasculature is critical for lung function, but defects in lymphatic function in the pathogenesis of lung disease is understudied. In mice, lymphatic dysfunction alone is sufficient to cause lung injury that resembles human emphysema. Whether lymphatic function is disrupted in cigarette smoke (CS)-induced emphysema is unknown. In this study, we investigated lung lymphatic function in the pathogenesis of CS-induced emphysema. Analysis of human lung tissue revealed significant lung lymphatic thrombosis in patients with emphysema compared to control smokers that increased with disease severity. In vitro assays demonstrated a direct effect of CS on lymphatic endothelial cell integrity. In a mouse model, CS exposure led to lung lymphatic thrombosis, decreased lymphatic drainage, and impaired leukocyte trafficking that preceded emphysema. Proteomic analysis of lymph confirmed upregulation of coagulation and inflammatory pathways in the lymphatics of CS-exposed mice compared to control mice. These data suggest that CS exposure results in lung lymphatic dysfunction with thrombosis, impaired leukocyte trafficking, and changes in the composition of lymph. In patients with emphysema, lung lymphatic thrombosis is seen with increasing disease severity. These studies for the first time demonstrate lung lymphatic dysfunction after cigarette smoke exposure and suggest a novel component in the pathogenesis of emphysema.


2021 ◽  
Author(s):  
Barbara D. Summers ◽  
Kihwan Kim ◽  
Zohaib Khan ◽  
Sangeetha Thangaswamy ◽  
Cristina C. Clement ◽  
...  

Abstract The lymphatic vasculature is critical for lung function, but defects in lymphatic function in the pathogenesis of lung disease is understudied. In mice, lymphatic dysfunction alone is sufficient to cause lung injury that resembles human emphysema. Whether lymphatic function is disrupted in cigarette smoke (CS)-induced emphysema is unknown. In this study, we investigated lung lymphatic function in the pathogenesis of CS-induced emphysema. Analysis of human lung tissue revealed significant lung lymphatic thrombosis in patients with emphysema compared to control smokers that increased with disease severity. In vitro assays demonstrated a direct effect of CS on lymphatic endothelial cell integrity. In a mouse model, CS exposure led to lung lymphatic thrombosis, decreased lymphatic drainage, and impaired leukocyte trafficking that preceded emphysema. Proteomic analysis of lymph confirmed upregulation of coagulation and inflammatory pathways in the lymphatics of CS-exposed mice compared to control mice. These data suggest that CS exposure results in lung lymphatic dysfunction with thrombosis, impaired leukocyte trafficking, and changes in the composition of lymph. In patients with emphysema, lung lymphatic thrombosis is seen with increasing disease severity. These studies for the first time demonstrate lung lymphatic dysfunction after cigarette smoke exposure and suggest a novel component in the pathogenesis of emphysema.


Endocrinology ◽  
2021 ◽  
Author(s):  
Gregory P Westcott ◽  
Evan D Rosen

Abstract Adipose tissue, once thought to be an inert receptacle for energy storage, is now recognized as a complex tissue with multiple resident cell populations which actively collaborate in response to diverse local and systemic metabolic, thermal, and inflammatory signals. A key participant in adipose tissue homeostasis that has only recently captured broad scientific attention is the lymphatic vasculature. The lymphatic system’s role in lipid trafficking and mediating inflammation makes it a natural partner in the regulation of adipose tissue, and evidence supporting a bidirectional relationship between lymphatics and adipose tissue has accumulated in recent years. Obesity is now understood to impair lymphatic function, while altered lymphatic function results in aberrant adipose tissue deposition, though the molecular mechanisms governing these phenomena have yet to be fully elucidated. We will review our current understanding of the relationship between adipose tissue and the lymphatic system here, focusing on known mechanisms of lymphatic-adipose cross-talk.


Diagnostics ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1873
Author(s):  
Anna Polomska ◽  
Epameinondas Gousopoulos ◽  
Daniel Fehr ◽  
Andreas Bachmann ◽  
Mathias Bonmarin ◽  
...  

Current diagnostic methods for evaluating the functionality of the lymphatic vascular system usually do not provide quantitative data and suffer from many limitations including high costs, complexity, and the need to perform them in hospital settings. In this work, we present a quantitative, simple outpatient technology named LymphMonitor to quantitatively assess lymphatic function. This method is based on the painless injection of the lymphatic-specific near-infrared fluorescent tracer indocyanine green complexed with human serum albumin, using MicronJet600TM microneedles, and monitoring the disappearance of the fluorescence signal at the injection site over time using a portable detection device named LymphMeter. This technology was investigated in 10 patients with unilateral leg or arm lymphedema. After injection of a tracer solution into each limb, the signal was measured over 3 h and the area under the normalized clearance curve was calculated to quantify the lymphatic function. A statistically significant difference in lymphatic clearance in the healthy versus the lymphedema extremities was found, based on the obtained area under curves of the normalized clearance curves. This study provides the first evidence that the LymphMonitor technology has the potential to diagnose and monitor the lymphatic function in patients.


2021 ◽  
Author(s):  
Phillip Ang ◽  
Matt Matrongolo ◽  
Max Tischfield

Congenital skull malformations are associated with vascular anomalies that can impair fluid balance in the central nervous system. We previously reported that humans with craniosynostosis and mutations in TWIST1 have dural venous sinus malformations. It is still unknown whether meningeal lymphatic networks, which are patterned alongside the venous sinuses, are also affected. Using a novel skull flat mounting technique, we show that the growth and expansion of meningeal lymphatics are perturbed in Twist1 craniosynostosis models. Changes to the local meningeal environment, including hypoplastic dura and venous malformations, affect the ability of lymphatic networks to sprout and remodel. Dorsal networks along the transverse sinus are hypoplastic with reduced branching. By contrast, basal networks closer to the skull base are more variably affected, showing exuberant growth in some animals suggesting they are compensating for vessel loss in dorsal networks. Injecting molecular tracers into cerebrospinal fluid reveals significantly less drainage to the deep cervical lymph nodes, indicative of impaired lymphatic function. Collectively, our results show that meningeal lymphatic development is hindered in craniosynostosis, suggesting central nervous system waste clearance may be impeded.


Sign in / Sign up

Export Citation Format

Share Document