acidic solution
Recently Published Documents


TOTAL DOCUMENTS

1209
(FIVE YEARS 214)

H-INDEX

56
(FIVE YEARS 12)

2022 ◽  
Vol 179 ◽  
pp. 106124
Author(s):  
R. Donat ◽  
M.İ. Eyice ◽  
K.E. Erden
Keyword(s):  

Polymers ◽  
2022 ◽  
Vol 14 (2) ◽  
pp. 330
Author(s):  
Tien N. H. Lo ◽  
Sung Woo Hong ◽  
Ha Soo Hwang ◽  
In Park

Superhydrophobic Al surfaces with excellent durability and anti-icing properties were fabricated by coating dual-scale rough Al substrates with fluorinated polysilazane (FPSZ). Flat Al plates were etched using an acidic solution, followed by immersion in boiling water to generate hierarchical micro-nano structures on their surfaces. The FPSZ coatings were synthesized by grafting 1H,1H,2H,2H-perfluorodecyltrimethoxysilane (FAS-17), a fluoroalkyl silane), onto methylpolysilazane, an organopolysilazane (OPSZ) backbone. The high water contact angle (175°) and low sliding angle (1.6°) of the FPSZ-coated sample with an FAS-17 content of 17.3 wt% promoted the efficient removal of a frozen ice column with a low ice adhesion strength of 78 kPa at −20.0 °C (70% relative humidity), which was 4.3 times smaller than that of an OPSZ-coated surface. The FPSZ-coated Al surface suppressed ice nucleation, leading to a decrease in ice nucleation temperature from −19.5 to −21.9 °C and a delay in freezing time from 334 to 4914 s at −19.0 °C compared with the OPSZ-coated Al surface. Moreover, after 40 icing–melting cycles the freezing temperature of a water droplet on the FPSZ-coated Al surface remained unchanged, whereas that on the FAS-17-coated Al surface increased from −22.3 to −20.7 °C. Therefore, the durability of the polymeric FPSZ coating was superior to that of the FAS-17 monolayer coating.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Kowit Suwannahong ◽  
Jiyapa Sripirom ◽  
Chadrudee Sirilamduan ◽  
Vanlop Thathong ◽  
Torpong Kreetachart ◽  
...  

This research focused on batch experiment using a new generation of chelating resins via an ion exchange process to describe the metabolic adsorption and desorption capacity onto iminodiacetic acid/Chelex 100, bis-pyridylmethyl amine/Dowex m4195, and aminomethyl phosphonic/Lewatit TP260 functional groups in bioleaching. The results showed that Dowex m4195 had the highest performance of adsorption capacity for copper removal in both H+-form and Na+-form. Results for Lewatit TP260 and Chelex 100 revealed lower adsorption performance than results for Dowex m4195. The investigation of desorption from chelating resins was carried out, and it was found that 2 M ammonium hydroxide concentration provided the best desorption capacity of about 64.86% for the H+-form Dowex m4195 followed by 52.55% with 2 M sulfuric acid. Lewatit with 2 M hydrochloric acid gave the best desorption performance in Na+-form while Chelex 100 using hydrochloric at 1 M and 2 M provided similar results in terms of the H+-form and Na+-form. As aspects of the selective chelating resins for copper (II) ions in aqueous acidic solution generated from synthetic copper-citrate complexes from bioleaching of e-waste were considered, H+-form Dowex m4195 was a good performer in adsorption using ammonium hydroxide for the desorption. However, chelating resins used were subsequently reused for more than five cycles with an acidic and basic solution. It can be concluded from these results that selective chelating resins could be used as an alternative for the treatment of copper (II) ions contained in e-waste or application to other divalent metals in wastewater for sustainable water and adsorbent reuse as circular economy.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 24
Author(s):  
Abdul Latif Ahmad ◽  
Oluwasola Idowu Ebenezer ◽  
Noor Fazliani Shoparwe ◽  
Suzylawati Ismail

The application of polymer inclusion membranes (PIMs) for the aquatic remediation of several heavy metals, dyes, and nutrients has been extensively studied. However, its application in treating organic compounds such as Ibuprofen, an emerging pharmaceutical contaminant that poses potential environmental problems, has not been explored satisfactorily. Therefore, graphene oxide (GO) doped PIMs were fabricated, characterized, and applied to extract aqueous Ibuprofen at varied pH conditions. The doped PIMs were synthesized using a low concentration of Aliquat 336 as carrier and 0, 0.15, 0.45, and 0.75% GO as nanoparticles in polyvinyl chloride (PVC) base polymer without adding any plasticizer. The synthesized PIM was characterized by SEM, FTIR, physical, and chemical stability. The GO doped PIM was well plasticized and had an optimal Ibuprofen extraction efficiency of about 84% at pH of 10 and 0.75% GO concentration. Furthermore, the GO doped PIM’s chemical stability indicates better stability in acidic solution than in the alkaline solution. This study demonstrates that the graphene oxide-doped PIM significantly enhanced the extraction of Ibuprofen at a low concentration. However, further research is required to improve its stability and efficiency for the remediation of the ubiquitous Ibuprofen in the aquatic environment.


2021 ◽  
Vol 6 (1) ◽  
pp. 1
Author(s):  
Mohammed Alsultan ◽  
Shaymaa Al-Rubaye ◽  
Amar Al-Keisy ◽  
Gerhard F. Swiegers ◽  
Intisar Ghanim Taha

Tailoring conductive polymers with inorganic photocatalysts, which provide photoinduced electron-hole generation, have significantly enhanced composites leading to excellent photoelectrodes. In this work, MnFe2O4 nanoparticles prepared by a hydrothermal method were combined with polyaniline to prepare mixed (hybrid) slurries, which were cast onto flexible FTO to prepare photoelectrodes. The resulting photoelectrodes were characterized by XRD, FESEM, HRTEM and UV-VIS. The photoelectrochemical performance was investigated by linear sweep voltammetry and chronoamperometry. The photocurrent achieved by MnFe2O4/Polyaniline was 400 μA/cm2 at 0.8 V vs. Ag/AgCl in Na2SO4 (pH = 2) at 100 mW/cm2, while polyaniline alone achieved only 25 μA/cm2 under the same conditions. The best MnFe2O4/Polyaniline displayed an incident photon-to-current conversion efficiency (IPCE) and applied bias photon-to-current efficiency (ABPE) of 60% at 405 nm wavelength, and 0.17% at 0.8 V vs. Ag/AgCl, respectively. High and stable photoelectrochemical performance was achieved for more than 900 s in an acidic environment.


Author(s):  
J. Martínez ◽  
M. de los Cobos ◽  
A. Peñalver ◽  
C. Aguilar ◽  
F. Borrull

AbstractThis study presents a rapid and novel sequential separation strategy based on extraction chromatography for determining 90Sr, 210Pb and 210Po in drinking water samples. It involves the use of Sr resin for the separation and then liquid scintillation counting and alpha spectrometry for the determination. The experimental results obtained showed that the proper acidic solution to quantitatively retain the aforementioned radionuclides is 3 M HNO3. The optimum eluents were determined for obtaining quantitative recoveries (70–80%) of 90Sr, 210Pb and 210Po. The method was validated with intercomparison water samples and is satisfactory in terms of minimum detectable activities, which are 50% lower than that established in RD 314/2016.


2021 ◽  
Vol 27 (4) ◽  
pp. 185-189
Author(s):  
MERVE ÖZCAN ◽  
BİLGEHAN TUNCA ◽  
IPEK BILTAŞ ◽  
TUNÇ TUKEN

In this study, the effect of different pre-surface finishing method on the aluminium anodization was investigated for AA 6063 alloy. Within the scope of pre-surface finishing method which is acidic solution concentrations and process time were determined. Acidic solution was determined by using hydrofluoric acid (HF) and nitric acid (HNO3). Also Gresoff LIM-5 LV chemical was used with different concentrations and process time for degreasing process. The etching effect of acidic solution on aluminium samples was investigated. The optimal etching behaviour was obtained with 1.0% concentration of HF and 3.2% concentration of HNO3 at 10 minutes process time. Also optimal surface properties were observed with 1.0% concentration of Gresoff LIM-5 LV at 12 minutes process time. Then anodic oxidation was performed by using 180 g / L sulfuric acid (H2SO4) and 18 volt (V). Surface morphology of the final aluminium profiles were examined with SEM analysis, Roughness, Gloss and Thickness tests.


Author(s):  
M. Próchniak ◽  
M. Grdeń

AbstractA new method of preparation of aqueous electrolyte baths for electrochemical deposition of nickel targets for medical accelerators is presented. It starts with fast dissolution of metallic Ni powder in a HNO3-free solvent. Such obtained raw solution does not require additional treatment aimed to removal nitrates, such as the acid evaporation and Ni salt precipitation-dissolution. It is used directly for preparation of the nickel plating baths after dilution with water, setting up pH value and after possible addition of H3BO3. The pH of the baths ranges from alkaline to acidic. Deposition of 95% of ca. 50 mg of Ni dissolved in the bath takes ca. 3.5 h for the alkaline electrolyte while for the acidic solution it requires ca. 7 h. The Ni deposits obtained from the acidic bath are physically and chemically more stable and possess smoother and crack-free surfaces as compared to the coatings deposited from the alkaline bath. A method of estimation of concentration of H2O2 in the electrolytic bath is also proposed.


Sign in / Sign up

Export Citation Format

Share Document