filtration performance
Recently Published Documents


TOTAL DOCUMENTS

509
(FIVE YEARS 203)

H-INDEX

34
(FIVE YEARS 9)

Author(s):  
Jürg A. Schütz ◽  
Anthony P. Pierlot ◽  
David L. J. Alexander

The potential for alcoholic vapors emitted by common sanitizing treatments to deteriorate the (electrostatic) filtration performance of disposable respirator masks has been investigated. Reports in the literature and some standard test methods provide a confusing and ambiguous picture concerning the relevance of this effect. Four different types of exposure were investigated in this study to clarify the effect of alcoholic vapor emissions on respirator masks. These included exposure to saturated vapors, use of hand sanitizers, cleaning of table surfaces and sanitization of masks by spraying them with alcohol-containing solutions. Methods employed were designed to be as real-world oriented as possible while remaining reproducible. Filtration performance and deterioration effects on exposure to the different treatments were determined on three different types of certified commercial respirator masks—a P2 and two KN95 masks. This study provides substantial evidence that disposable respirator masks with an accepted performance rating are seriously compromised from an exposure to saturated alcoholic vapors, can tolerate a one-off spray treatment with an alcoholic solution and retain their attested protection under the influence of alcoholic vapors from the use of hand sanitizer or spray sanitizer. Considering the range of vastly different outcomes obtained from the four treatments investigated, it seems prudent to assess in each case the specific effects of alcoholic solution treatments and vapors on respirator masks before use.


Membranes ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 23
Author(s):  
Jizhen Wang ◽  
Shaoyang Liu ◽  
Xu Yan ◽  
Zhan Jiang ◽  
Zijing Zhou ◽  
...  

Environmentally friendly face masks with high filtration efficiency are in urgent need to fight against the COVID-19 pandemic, as well as other airborne viruses, bacteria and particulate matters. In this study, coaxial electrospinning was employed to fabricate a lithium chloride enhanced cellulose acetate/thermoplastic polyurethanes (CA/TPU-LiCl) face mask nanofiber filtration membrane, which was biodegradable and reusable. The analysis results show that the CA/TPU-LiCl membrane had an excellent filtration performance: when the filtration efficiency reached 99.8%, the pressure drop was only 52 Pa. The membrane also had an outstanding reusability. The filtration performance maintained at 98.2% after 10 test cycles, and an alcohol immersion disinfection treatment showed no effect on its filtration performance. In summary, the CA/TPU-LiCl nanofiber membrane made in this work is a promising biodegradable and reusable filtration material with a wide range of potential applications, including high-performance face mask.


2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Jun Jie Wu

AbstractFor ultrafiltration, and membrane filtration more generally, the quantitative determination of the modes of fouling remains a subject of great interest. Herein an integral method for determining the modes from a time series of volumetric flux $$J\left(t\right)$$ J t is given and illustrated with previously published filtration data of bergamot juice (Ruby-Figueroa et al (J Membr Sci 524:108-116, 2017)). The integral method of fouling analysis has the potential to become the cornerstone of a robust empirical process. In addition to determining, in a clear-cut manner, the point at which there is a switch from one mode to another, the robust methodology yields characteristic $$J\left(t\right)$$ J t equation for each mode that are an excellent fit to the data. The emphasis is upon the creation of a robust methodology which is best viewed as being a semi-empirical method that is indicative of the modes of fouling. For the example chosen, the initial 4 L/m2 generates some pore blocking after which the main mode of fouling is cake build-up. The variation of overall resistance with time is also informative and analysis of this series was used to check the result for the initial phase of fouling as determined from the time series of volumetric flux. A comparison against the ARIMA (Autoregressive integrated moving average) method, which has never been previously undertaken, is given herein. The integral method of fouling analysis was found to be superior, in part because of the quality of fit to the data and in part because it enables one to establish whether the initial fouling is different in character from the subsequent fouling. Having this information can improve membrane selection and overall membrane filtration performance.


Sign in / Sign up

Export Citation Format

Share Document