amplification effect
Recently Published Documents


TOTAL DOCUMENTS

206
(FIVE YEARS 65)

H-INDEX

18
(FIVE YEARS 3)

Landslides ◽  
2022 ◽  
Author(s):  
Hongchao Zheng ◽  
Zhenming Shi ◽  
Ming Peng ◽  
Shenggong Guan ◽  
Kevin J. Hanley ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-27
Author(s):  
Hailiang Wang ◽  
Shaomin Yan ◽  
Zhongxian Liu ◽  
Xinglei Cheng

A sedimentary valley has a visible amplification effect on a seismic response, and the current 2D topographies cannot truthfully reflect the twists and turns of a large-scale river valley. Taking a sinusoidal curved valley site as a model, the dynamic finite element analysis method and the introduction of a viscoelastic artificial boundary were developed to study the 3D seismic response of the dimensional topographies in the homogeneous curved valley to vertical incident P, SV, and SH waves. The results showed that the bending sedimentary valley site earthquake presented significant features simultaneously, depending on the number of valley bends, the frequency of the excitations, the shear wave velocity of sedimentary soil, and the depth of the river valley. The surface displacement amplitudes of three-dimensional meandering sedimentary valleys are significantly different from those of sedimentary basins. The amplification area of the meandering valley is related to the angle between the valley axis and wave vibration direction, and the amplification effect is significant when the angle is small. The movement in the main direction showed a center focus, and the secondary y-direction displacement showed both a central focus and an edge effect. When the frequency of the incident wave was close to the natural vibration frequency in a specific direction, the movement in this direction significantly increased because of the resonance effect. The displacement amplitude of the surface was proportional to the depth of the river valley, and the surface displacement was presented in different forms based on the frequency of the excitations. The results provided some guidance for the earthquake resistance of the curved valley site.


2021 ◽  
Vol 130 (13) ◽  
pp. 134501
Author(s):  
James P. Ashton ◽  
Stephen J. Moxim ◽  
Ashton D. Purcell ◽  
Patrick M. Lenahan ◽  
Jason T. Ryan

2021 ◽  
Author(s):  
James P. Ashton ◽  
Stephen J. Moxim ◽  
Ashton D. Purcell ◽  
Patrick M. Lenahan ◽  
Jason T. Ryan

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Xiao Song ◽  
Songtao Xue

At present, the midstory isolation (MSI) technology has great potential for application in historical buildings’ retrofitting and multifunction buildings. The coupling effect due to the variability of the location of the isolation layer may amplify the structural seismic response and is required for in-depth analysis. This paper aims to evaluate the magnitude of the coupling effect and delimitate the region of the coupling effect to be considered. Based on the complex mode superposition method, the explicit formulas for calculating the random response of the simplified model are deduced. The root-mean-square (RMS) ratio of the shear force coefficient of the upper isolation system is adopted as the performance indicator to evaluate the coupling amplification effect of the MSI system. Parameter analysis indicates that the coupling region is closely related to the mass ratio and frequency ratio of the upper and lower structures to the isolation layer. In general, the region of the coupling effect to be considered can be divided into two parts according to parameters of frequency ratios, depending on the thresholds of the performance indicator. As the mass ratio of the upper isolation system to the entire system increases, one of the coupling regions shrinks and eventually disappears, indicating that the coupling amplification effect in this region can be neglected under certain conditions. Finally, the time-domain analysis of three representative numerical cases of MSI buildings was performed to verify the reliability of the results obtained from the frequency-domain analysis. The research results can provide technical guidance for the preliminary design of the MSI buildings.


2021 ◽  
pp. 222-242
Author(s):  
Linda Rae Bennett ◽  
Setiyani Marta Dewi
Keyword(s):  

2021 ◽  
Author(s):  
Qingcheng Song ◽  
Xiangtian Deng ◽  
Wenbo Yang ◽  
Yiran Zhang ◽  
Junyong Li ◽  
...  

Abstract Background Photodynamic therapy (PDT) is a promising method for cancer treatment because of its advantages such as easy operation, good targeting, minimal side effects, low systemic toxicity and less invasiveness. However, the hypoxic microenvironment within the tumor significantly inhibited the therapeutic effect of PDT. The development of targeted nanoplatform for regulating hypoxia microenvironment is an important method to give full play to the therapeutic effect of PDT. Methods In this study, we designed and prepared a novel chemo-photodynamic therapy nanoplatform, which can continuously catalyze the decomposition of H2O2 in tumors to generate oxygen (O2) to enhance the therapeutic effect of PDT, resulting in DNA damage, while releasing MTH1 inhibitors in tumor cells to inhibit the repair process of DNA damage caused by PDT. Results In our work, a simple one-step reduction approach was applied to enable platinum nanoparticles (Pt NPs) growth in situ in the nanochannels of mesoporous silica nanoparticles (MSNs). After physical encapsulation of photosensitizer chlorin e6 (Ce6) and MTH1 inhibitor TH588, the drug loading nanoplatform was modified with an arginine-glycine-aspartic acid (RGD) functionalized liposome shell, resulting in the fabrication of multifunctional nanoplatform MSN-Pt@Ce6/TH588@Liposome-RGD (MPCT@Li-R) with dual amplification effect and achieve the purpose of chemo-photodynamic therapy. Conclusions Our study provides a new strategy for PDT to ablation tumor cells by damaging the DNA of tumor nucleus and mitochondria, meanwhile inhibiting the repair process after the damage.


2021 ◽  
pp. 107754632110429
Author(s):  
Zhenghui Qiao ◽  
Mei Cheng ◽  
Yawei Jin

Helmholtz sound source consists of Helmholtz resonator and speaker and belongs to a new type of high-intensity sound source. It has potential industrial advantage in the aerodynamic acoustic application for the large amplitude wave. Based on the lumped parameter principle of acoustic impedance, an acoustic theoretical model is suggested. The model reveals the amplification regulation of the sound source on the acoustic wave. Through the acoustic theoretical computation, a dynamic amplification and an amplification limitation are analyzed. The wave-amplification effect attributes to the parameter regulation of the macro, micro, and dynamic-varied sizes of the sound source. The repetitive motion of the vibrating membrane of speaker causes three working states of balance, squeeze, and stretch. The three states act as specific boundary conditions and demonstrate as three different theoretical curves. The theoretical boundary curves codetermine an experimental curve, which essentially limits the practical amplification effect. Nevertheless, the amplification gain of sound pressure amplitude reaches up to 1.8 times, and the potential maximum amplitude reaches up to 3600 Pa (164 dB). The two quantitative characteristics indicate the maximum capability of the sound source on wave-amplification effect. The control sensitivity of the complicated impedance parameters on wave amplification is 0.26 Pa/Hz. The acoustic theoretical model is valuable in the series aspects of the industrial design, manufacture, and application of the sound source. Especially, the theoretical innovation lays the foundation of solid to these aspects.


Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 384
Author(s):  
Yan-Na Zhao ◽  
Tie Wang ◽  
Dong-Yang Wang ◽  
Xue Han ◽  
Shou Zhang ◽  
...  

We investigate the optical amplification of the output field and fast-slow light effect in a three-mode cavity optomechanical system without rotating wave approximation and discuss two ways of realizing the optical amplification effect. Resorting to the Coulomb coupling between the nanomechanical resonators, the asymmetric double optomechanically induced amplification effect can be achieved by utilizing the counterrotating term. Moreover, we find a remarkable optical amplification effect and observe the prominent fast-slow light effect at the singular point since the introduction of mechanical gain. Meanwhile, the transmission rate of the output field is increased by four orders of magnitude and the group delay time can reach in the order of 105μs. Our work is of great significance for the potential applications of optomechanically induced amplification in quantum information processing and quantum precision measurement.


Sign in / Sign up

Export Citation Format

Share Document