optical stimulation
Recently Published Documents


TOTAL DOCUMENTS

204
(FIVE YEARS 50)

H-INDEX

20
(FIVE YEARS 3)

2021 ◽  
pp. 107385842110570
Author(s):  
An Ping ◽  
Li Pan ◽  
Jianmin Zhang ◽  
Kedi Xu ◽  
Kenneth E. Schriver ◽  
...  

Targeted optical neural stimulation comprises infrared neural stimulation and optogenetics, which affect the nervous system through induced thermal transients and activation of light-sensitive proteins, respectively. The main advantage of this pair of optical tools is high functional selectivity, which conventional electrical stimulation lacks. Over the past 15 years, the mechanism, safety, and feasibility of optical stimulation techniques have undergone continuous investigation and development. When combined with other methods like optical imaging and high-field functional magnetic resonance imaging, the translation of optical stimulation to clinical practice adds high value. We review the theoretical foundations and current state of optical stimulation, with a particular focus on infrared neural stimulation as a potential bridge linking optical stimulation to personalized medicine.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nicholas Fritz ◽  
Daniel Gulick ◽  
Mark Bailly ◽  
Jennifer M. Blain Christen

AbstractOptogenetics presents an alternative method for interfacing with the nervous system over the gold-standard of electrical stimulation. While electrical stimulation requires electrodes to be surgically embedded in tissue for in vivo studies, optical stimulation offers a less-invasive approach that may yield more specific, localized stimulation. The advent of optogenetic laboratory animals—whose motor neurons can be activated when illuminated with blue light—enables research into refining optical stimulation of the mammalian nervous system where subsets of nerve fibers within a nerve may be stimulated without embedding any device directly into the nerve itself. However, optical stimulation has a major drawback in that light is readily scattered and absorbed in tissue thereby limiting the depth with which a single emission source can penetrate. We hypothesize that the use of multiple, focused light emissions deployed around the circumference of a nerve can overcome these light-scattering limitations. To understand the physical parameters necessary to produce pinpointed light stimulation within a single nerve, we employed a simplified Monte Carlo simulation to estimate the size of nerves where this technique may be successful, as well as the necessary optical lens design for emitters to be used during future in vivo studies. By modeling multiple focused beams, we find that only fascicles within a nerve diameter less than 1 mm are fully accessible to focused optical stimulation; a minimum of 4 light sources is required to generate a photon intensity at a point in a nerve over the initial contact along its surface. To elicit the same effect in larger nerves, focusing lenses would require a numerical aperture $$> 1$$ > 1 . These simulations inform on the design of instrumentation capable of stimulating disparate motor neurons in mouse sciatic nerve to control hindlimb movement.


ACS Sensors ◽  
2021 ◽  
Author(s):  
Longchun Wang ◽  
Chaofan Ge ◽  
Fang Wang ◽  
Zhejun Guo ◽  
Wen Hong ◽  
...  

Author(s):  
Catherine S. Thomas ◽  
Aida Mohammadkhani ◽  
Madiha Rana ◽  
Min Qiao ◽  
Corey Baimel ◽  
...  

AbstractReward and reinforcement processes are critical for survival and propagation of genes. While numerous brain systems underlie these processes, a cardinal role is ascribed to mesolimbic dopamine. However, ventral tegmental area (VTA) dopamine neurons receive complex innervation and various neuromodulatory factors, including input from lateral hypothalamic (LH) orexin/hypocretin neurons which also express and co-release the neuropeptide, dynorphin. Dynorphin in the VTA induces aversive conditioning through the Kappa opioid receptor (KOR) and decreases dopamine when administered intra-VTA. Exogenous application of orexin or orexin 1 receptor (oxR1) antagonists in the VTA bidirectionally modulates dopamine-driven motivation and reward-seeking behaviours, including the attribution of motivational value to primary rewards and associated conditioned stimuli. However, the effect of endogenous stimulation of LH orexin/dynorphin-containing projections to the VTA and the potential contribution of co-released dynorphin on mesolimbic dopamine and reward related processes remains uncharacterised. We combined optogenetic, electrochemical, and behavioural approaches to examine this. We found that optical stimulation of LH orexin/dynorphin inputs in the VTA potentiates mesolimbic dopamine neurotransmission in the nucleus accumbens (NAc) core, produces real time and conditioned place preference, and increases the food cue-directed orientation in a Pavlovian conditioning procedure. LH orexin/dynorphin potentiation of NAc dopamine release and real time place preference was blocked by an oxR1, but not KOR antagonist. Thus, rewarding effects associated with optical stimulation of LH orexin/dynorphin inputs in the VTA are predominantly driven by orexin rather than dynorphin.


2021 ◽  
Vol 15 ◽  
Author(s):  
Dimitrios Firfilionis ◽  
Frances Hutchings ◽  
Reza Tamadoni ◽  
Darren Walsh ◽  
Mark Turnbull ◽  
...  

Neuromodulation is an established treatment for numerous neurological conditions, but to expand the therapeutic scope there is a need to improve the spatial, temporal and cell-type specificity of stimulation. Optogenetics is a promising area of current research, enabling optical stimulation of genetically-defined cell types without interfering with concurrent electrical recording for closed-loop control of neural activity. We are developing an open-source system to provide a platform for closed-loop optogenetic neuromodulation, incorporating custom integrated circuitry for recording and stimulation, real-time closed-loop algorithms running on a microcontroller and experimental control via a PC interface. We include commercial components to validate performance, with the ultimate aim of translating this approach to humans. In the meantime our system is flexible and expandable for use in a variety of preclinical neuroscientific applications. The platform consists of a Controlling Abnormal Network Dynamics using Optogenetics (CANDO) Control System (CS) that interfaces with up to four CANDO headstages responsible for electrical recording and optical stimulation through custom CANDO LED optrodes. Control of the hardware, inbuilt algorithms and data acquisition is enabled via the CANDO GUI (Graphical User Interface). Here we describe the design and implementation of this system, and demonstrate how it can be used to modulate neuronal oscillations in vitro and in vivo.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Luke Y. Prince ◽  
Matthew M. Tran ◽  
Dorian Grey ◽  
Lydia Saad ◽  
Helen Chasiotis ◽  
...  

AbstractNeurons can carry information with both the synchrony and rate of their spikes. However, it is unknown whether distinct subtypes of neurons are more sensitive to information carried by synchrony versus rate, or vice versa. Here, we address this question using patterned optical stimulation in slices of somatosensory cortex from mouse lines labelling fast-spiking (FS) and regular-spiking (RS) interneurons. We used optical stimulation in layer 2/3 to encode a 1-bit signal using either the synchrony or rate of activity. We then examined the mutual information between this signal and the interneuron responses. We found that for a synchrony encoding, FS interneurons carried more information in the first five milliseconds, while both interneuron subtypes carried more information than excitatory neurons in later responses. For a rate encoding, we found that RS interneurons carried more information after several milliseconds. These data demonstrate that distinct interneuron subtypes in the neocortex have distinct sensitivities to synchrony versus rate codes.


2021 ◽  
Vol 12 (1) ◽  
pp. e32-e32
Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Ali Akbar Saboury ◽  
Bahram Goliaei ◽  
Jun Hong ◽  
...  

Introduction: Non-clinical cardiovascular drug safety assessment is the main step in the progress of new pharmaceutical products. Cardiac drug safety testing focuses on a delayed rectifier potassium channel block and QT interval prolongation, whereas optogenetics is a powerful technology for modulating the electrophysiological properties of excitable cells. Methods: For this purpose, the blue light-gated ion channel, channelrhodopsin-2 (ChR2), has been introduced into isolated primary neonatal cardiomyocytes via a lentiviral vector. After being subjected to optical stimulation, transmembrane potential and intracellular calcium were assessed. Results: Here, we generated cardiomyocytes expressing ChR2 (light-sensitive protein), that upon optical stimulation, the cardiomyocytes depolarized result from alterations of membrane voltage and intracellular calcium. Conclusion: This cell model was easily adapted to a cell culture system in a laboratory, making this method very attractive for therapeutic research on cardiac optogenetics.


Sign in / Sign up

Export Citation Format

Share Document