discrete pareto distribution
Recently Published Documents


TOTAL DOCUMENTS

4
(FIVE YEARS 3)

H-INDEX

1
(FIVE YEARS 0)

Author(s):  
Charles K. Amponsah ◽  
Tomasz J. Kozubowski ◽  
Anna K. Panorska

AbstractWe propose a new stochastic model describing the joint distribution of (X,N), where N is a counting variable while X is the sum of N independent gamma random variables. We present the main properties of this general model, which include marginal and conditional distributions, integral transforms, moments and parameter estimation. We also discuss in more detail a special case where N has a heavy tailed discrete Pareto distribution. An example from finance illustrates the modeling potential of this new mixed bivariate distribution.


2020 ◽  
Author(s):  
Necmi Gursakal ◽  
Bulent Batmaz ◽  
Gamze Aktuna

When we consider a probability distribution about how many COVID-19 infected people will transmit the disease, two points become important. First, there should be super-spreaders in these distributions/networks and secondly, the Pareto principle should be valid in these distributions/networks. When we accept that these two points are valid, the distribution of transmission becomes a discrete Pareto distribution, which is a kind of power law. Having such a transmission distribution, then we can simulate COVID-19 networks and find super-spreaders using the centricity measurements in these networks. In this research, in the first we transformed a transmission distribution of statistics and epidemiology into a transmission network of network science and secondly we try to determine who the super-spreaders are by using this network and eigenvalue centrality measure. We underline that determination of transmission probability distribution is a very important point in the analysis of the epidemic and determining the precautions to be taken.


2020 ◽  
Vol 148 ◽  
Author(s):  
N. Gürsakal ◽  
B. Batmaz ◽  
G. Aktuna

Abstract When we consider a probability distribution about how many COVID-19-infected people will transmit the disease, two points become important. First, there could be super-spreaders in these distributions/networks and second, the Pareto principle could be valid in these distributions/networks regarding estimation that 20% of cases were responsible for 80% of local transmission. When we accept that these two points are valid, the distribution of transmission becomes a discrete Pareto distribution, which is a kind of power law. Having such a transmission distribution, then we can simulate COVID-19 networks and find super-spreaders using the centricity measurements in these networks. In this research, in the first we transformed a transmission distribution of statistics and epidemiology into a transmission network of network science and second we try to determine who the super-spreaders are by using this network and eigenvalue centrality measure. We underline that determination of transmission probability distribution is a very important point in the analysis of the epidemic and determining the precautions to be taken.


Sign in / Sign up

Export Citation Format

Share Document