Abstract
Purpose
In Mokken scaling, the Crit index was proposed and is sometimes used as evidence (or lack thereof) of violations of some common model assumptions. The main goal of our study was twofold: To make the formulation of the Crit index explicit and accessible, and to investigate its distribution under various measurement conditions.
Methods
We conducted two simulation studies in the context of dichotomously scored item responses. We manipulated the type of assumption violation, the proportion of violating items, sample size, and quality. False positive rates and power to detect assumption violations were our main outcome variables. Furthermore, we used the Crit coefficient in a Mokken scale analysis to a set of responses to the General Health Questionnaire (GHQ-12), a self-administered questionnaire for assessing current mental health.
Results
We found that the false positive rates of Crit were close to the nominal rate in most conditions, and that power to detect misfit depended on the sample size, type of violation, and number of assumption-violating items. Overall, in small samples Crit lacked the power to detect misfit, and in larger samples power differed considerably depending on the type of violation and proportion of misfitting items. Furthermore, we also found in our empirical example that even in large samples the Crit index may fail to detect assumption violations.
Discussion
Even in large samples, the Crit coefficient showed limited usefulness for detecting moderate and severe violations of monotonicity. Our findings are relevant to researchers and practitioners who use Mokken scaling for scale and questionnaire construction and revision.