max phases
Recently Published Documents


TOTAL DOCUMENTS

333
(FIVE YEARS 151)

H-INDEX

37
(FIVE YEARS 10)

2022 ◽  
Vol 202 ◽  
pp. 111013
Author(s):  
Muhammad Waqas Qureshi ◽  
Xinxin Ma ◽  
Guangze Tang ◽  
Ramesh Paudel ◽  
Durga Paudyal
Keyword(s):  

2022 ◽  
Vol 11 (2) ◽  
pp. 273-282
Author(s):  
Xinxin Qi ◽  
Weilong Yin ◽  
Sen Jin ◽  
Aiguo Zhou ◽  
Xiaodong He ◽  
...  

AbstractMo2Ga2C is a new MAX phase with a stacking Ga-bilayer as well as possible unusual properties. To understand this unique MAX phase structure and promote possible future applications, the structure, chemical bonding, and mechanical and thermodynamic properties of Mo2Ga2C were investigated by first-principles. Using the “bond stiffness” model, the strongest covalent bonding (1162 GPa) was formed between Mo and C atoms in Mo2Ga2C, while the weakest Ga-Ga (389 GPa) bonding was formed between two Ga-atomic layers, different from other typical MAX phases. The ratio of the bond stiffness of the weakest bond to the strongest bond (0.33) was lower than 1/2, indicating the high damage tolerance and fracture toughness of Mo2Ga2C, which was confirmed by indentation without any cracks. The high-temperature heat capacity and thermal expansion of Mo2Ga2C were calculated in the framework of quasi-harmonic approximation from 0 to 1300 K. Because of the metal-like electronic structure, the electronic excitation contribution became more significant with increasing temperature above 300 K.


2022 ◽  
pp. 1-47
Author(s):  
Kalim Deshmukh ◽  
Aqib Muzaffar ◽  
Tomáš Kovářík ◽  
M. Basheer Ahamed ◽  
S.K. Khadheer Pasha
Keyword(s):  

2021 ◽  
pp. 2103228
Author(s):  
Zhiguo Du ◽  
Cheng Wu ◽  
Yuchuan Chen ◽  
Qi Zhu ◽  
Yanglansen Cui ◽  
...  
Keyword(s):  

2021 ◽  
Vol 1 (4) ◽  
pp. 216-222
Author(s):  
Sheida Haji Amiri ◽  
Nasser Pourmohammadie Vafa

The Ti3SiC2 used in this project has been purchased ready-made. This study aimed to investigate the effect of sintering temperature on samples' microstructure and mechanical properties, including three-point flexural strength, Vickers hardness, and fracture toughness. Therefore, Ti3SiC2 samples were sintered under a vacuum atmosphere at a pressure of 35 MPa for 30 minutes at two temperatures of 1500 °C and 1550 °C by hot pressing. The microstructure obtained from the fracture cross-section of the samples shows that by increasing the sintering temperature to 1550 °C, the microstructure of this sample becomes larger than the sintered sample at 1500 °C. Also, increasing the sintering temperature to 1550 °C causes the decomposition of Ti3SiC2 to TiC, which can be seen in the X-ray diffraction pattern (XRD). In addition, the relative density of the sintered sample at 1550 °C is 98.08% which is higher than that of the sintered sample at 1500 °C with the result of 89%. On the other hand, the three-point flexural strength (227.5 MPa), the Vickers hardness (~9 GPa), and the fracture toughness (8.6 MPa.m1/2) of the sintered sample at 1500 °C are higher due to the fine-grained structure.


2021 ◽  
Vol 1 (4) ◽  
pp. 211-216
Author(s):  
Maryam Akhlaghi ◽  
Esmaeil Salahi ◽  
Seyed Ali Tayebifard ◽  
Gert Schmidt

In this research, the 2nd part of a series of papers on the processing and characterization of TiAl–Ti3AlC2 composites, the phase evolution during the manufacturing process was investigated by X-ray diffraction (XRD) analysis and Rietveld refinement method. Metallic Ti and Al powders with different amounts of previously-synthesized Ti3AlC2 additives (10, 15, 20, 25 and 30 wt%) were ball-milled and densified by spark plasma sintering (SPS) under 40 MPa for 7 min at 900 °C. Before the sintering process, XRD test verified that the powder mixtures contained metallic Ti and Al as well as Ti3AlC2 and TiC (lateral phase synthesized with Ti3AlC2) phases. In the sintered composites, the in-situ synthesis of TiAl and Ti3Al intermetallics as well as the presence of Ti3AlC2 and the formation and Ti2AlC MAX phases were disclosed. The weight percentage of each phase in the final composition of the samples and the crystallite size of different phases were calculated by the Rietveld refinement method based on the XRD patterns. The size of Ti3AlC2 crystallites in sintered samples was compared with the crystallite size of synthesized Ti3AlC2 powder.


Author(s):  
Abhijit Biswas ◽  
Varun Natu ◽  
Anand B Puthirath

Abstract Layered nanolaminate ternary carbides, nitrides and carbonitrides with general formula Mn+1 AXn or MAX (n = 1, 2, or 3, M is an early transition metal, A is mostly group 13 or 14 element, and X is C and/or N) has revolutionized the world of nanomaterials, due to the coexistence of both ceramic and metallic nature, giving rise to exceptional mechanical, thermal, electrical, chemical properties and wide range of applications. Although several solid-state bulk synthesis methods have been developed to produce a variety of MAX phases, however, for certain applications, the growth of MAX phases, especially in its high-quality epitaxial thin films form is of increasing interest. Here, we summarize the progress made thus far in epitaxial growth and property evaluation of MAX phase thin films grown by various deposition techniques. We also address the important future research directions to be made in terms of thin-film growth. Overall, in the future, high-quality single-phase epitaxial thin film growth and engineering of chemically diverse MAX phases may open up interesting new avenues for next-generation technology.


Author(s):  
Xian-Hu Zha ◽  
Xiufang Ma ◽  
Shiyu Du ◽  
Rui-Qin Zhang ◽  
Ran Tao ◽  
...  

Author(s):  
Yu.M. Solonin ◽  
M.P. Savyak ◽  
M.A. Vasilkivska ◽  
V.I. Ivchenko

2021 ◽  
Vol 277 ◽  
pp. 114649
Author(s):  
T.A. Prikhna ◽  
O.P. Ostash ◽  
A.S. Kuprin ◽  
V.Ya. Podhurska ◽  
T.B. Serbenyuk ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document