acceleration pulse
Recently Published Documents


TOTAL DOCUMENTS

48
(FIVE YEARS 11)

H-INDEX

6
(FIVE YEARS 0)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7616
Author(s):  
Georg Baumann ◽  
Reinhard Brandner ◽  
Ulrich Müller ◽  
Alexander Stadlmann ◽  
Florian Feist

In order to use wood for structural and load-bearing purposes in mechanical engineering, basic information on the impact behaviour of the material over a wide temperature range is needed. Diffuse porous hardwoods such as solid birch wood (Betula pendula) and solid beech wood (Fagus sylvatica) are particularly suited for the production of engineered wood products (EWPs) such as laminated veneer lumber (LVL) or plywood due to their processability in a veneer peeling process. In the frame of this study, solid birch wood and solid beech wood samples (300 × 20 × 20 mm3) were characterised by means of an impact pendulum test setup (working capacity of 150 J) at five temperature levels, ranging from −30 °C to +90 °C. The pendulum hammer (mass = 15 kg) was equipped with an acceleration sensor in order to obtain the acceleration pulse and deceleration force besides the impact bending energy. In both solid birch wood and solid beech wood, the deceleration forces were highest at temperatures at and below zero. While the average impact bending energy for solid birch wood remained almost constant over the whole considered temperature range, it was far less stable and prone to higher scattering for solid beech wood.


PLoS ONE ◽  
2021 ◽  
Vol 16 (9) ◽  
pp. e0257292
Author(s):  
Cyrille Grébonval ◽  
Xavier Trosseille ◽  
Philippe Petit ◽  
Xuguang Wang ◽  
Philippe Beillas

Current highly automated vehicle concepts include reclined seat layouts that could allow occupants to relax during the drive. The main objective of this study was to investigate the effects of seat pan and pelvis angles on the kinematics and injury risk of a reclined occupant by numerical simulation of a frontal sled test. The occupant, represented by a detailed 50th percentile male human body model, was positioned on a semi-rigid seat. Three seat pan angles (5, 15, and 25 degrees from the horizontal) were used, all with a seatback angle of 40 degrees from the vertical. Three pelvis angles (60, 70, and 80 degrees from the vertical), representing a nominal and two relaxed sitting positions, were used for each seat pan angle. The model was restrained using a pre-inflated airbag and a three-point seatbelt equipped with a pretensioner and a load limiter before being subjected to two frontal crash pulses. Both model kinematic response and predicted injury risk were affected by the seat pan and the pelvis angles in a reclined seatback position. Submarining occurrence and injury risk increased with lower seat pan angle, higher pelvis angle, and acceleration pulse severity. In some cases (in particular for a 15 degrees seat pan), a small variation in seat pan or pelvis angle resulted in large differences in terms of kinematics and predicted injury. This study highlights the potential effects of the seat pan and pelvis angles for reclined occupant protection. These parameters should be assessed experimentally with volunteers to determine which combinations are most likely to be adopted for comfort and with post mortem human surrogates to confirm their significance during impact and to provide data for model validation. The sled and restraint models used in this study are provided under an open-source license to facilitate further comparisons.


2021 ◽  
Vol 26 (6) ◽  
Author(s):  
Hua-Ping Wan ◽  
Lei Su ◽  
Dan M. Frangopol ◽  
Zhiwang Chang ◽  
Wei-Xin Ren ◽  
...  

2021 ◽  
pp. 1-30
Author(s):  
Michael Guthrie

Abstract The use of bounding scenarios is a common practice which greatly simplifies the design and qualification of structures. However, this approach implicitly assumes that the quantities of interest increase monotonically with the input to the structure, which is not necessarily true for nonlinear structures. This paper surveys the literature for observations of nonmonotonic behavior of nonlinear systems, and finds such observations in both the earthquake engineering and applied mechanics literature. Numerical simulations of a single degree of freedom mass-spring system with an elastic-plastic spring subjected to a triangular base acceleration pulse are then presented, and it is shown that the relative acceleration of this system scales nonmonotonically with the input magnitude in some cases. The equation of motion for this system is solved symbolically and an approximate expression for the relative acceleration is developed, which qualitatively agrees with the nonmonotonic behavior seen in the numerical results. The nonmonotonicity is investigated and found to be a result of dynamics excited by the discontinuous derivative of the base acceleration pulse, the magnitude of which scales nonmonotonically with the input magnitude due to the fact that first yield of the spring occurs earlier as the input magnitude is increased. The relevance of this finding within the context of defining bounding scenarios is discussed and it is recommended that modeling be used to perform a survey of the full range of possible inputs prior to defining bounding scenarios.


Author(s):  
Alexander S. Aleshin ◽  
Vladimir V. Pogrebchenko ◽  
Sergey N. Nikitin

The article describes a new type of seismic microzonation, called the method of solving a direct problem. The main methodological technique in this case is the formation of models of the soil layer on the basis of complex engineering-geological and geophysical studies. An original computer simulation technique based on the use of a short acceleration pulse as the initial seismic impact is proposed. In the calculations of the increment of seismic intensity, a new formula is used that takes into account all the factors of the influence of soil properties on the parameters of seismic impacts – seismic rigidity, water saturation, resonant effects and the nonlinearity of the reaction of soils to strong seismic impacts. Based on the obtained data, the models of ground layers at the construction site are mapped and the parameters of seismic impacts that correspond to the properties of each model of ground massif are determined. The proposals presented in the article are reflected in the regulatory documents devoted to the SMZ of objects of increased responsibility and territorial planning.


2021 ◽  
Vol 326 ◽  
pp. 00004
Author(s):  
Denis Shtreker ◽  
Mikhail Polishchuck ◽  
Arkadii Popov

In this paper the influence of the shaper parameters on the characteristics of acceleration pulses (peak value and duration) reproduced on mechatronic shock machines is analyzed. A comparison of the acceleration pulses obtained experimentally and by computational methods is presented. Recommendations for clarifying the requirements for methodological calculations of pulse parameters are given. The dependence of the elastic force of the shock pulse shaper on its deformation is presented. The influence of this characteristic on the peak value and duration of the acceleration pulse is estimated. The influence of the height of the shaper on the parameters of the acceleration pulses is analyzed. The concept of a device that allows you to automatically change the height of the shaper to obtain a wider range of acceleration pulses is presented. The interaction of the shock table with the shaper by means of computer modeling is modelled. Conclusions about the dependences of the duration and peak value of the acceleration pulses on the parameters of the shaper (stiffness and height) are drawn. Recommendations for selecting the parameters of the shaper to obtain acceleration pulses with the desired parameters are given.


Author(s):  
Seyed Saeed Ahmadisoleymani ◽  
Samy Missoum

Abstract Finite element-based crashworthiness optimization is nowadays extensively used to improve the safety of vehicles. However, the responses of a crash simulation are notoriously noisy. In addition, the actual or simulated responses during a crash can be highly sensitive to uncertainties. These uncertainties appear in various forms such as uncontrollable random parameters (e.g., impact conditions). To address these challenges, an optimization algorithm based on a Stochastic Kriging (SK) and an Augmented Expected Improvement (AEI) infill criterion is proposed. A SK enables the approximation of a response while accounting for the noise-induced aleatory variance. In addition, SK has the advantage of reducing the dimensionality of the problem by implicitly accounting for the influence of random parameters and their contribution to the overall aleatory variance. In the proposed algorithm, the aleatory variance is initially estimated through direct sampling and subsequently approximated by a regression kriging. This aleatory variance approximation, which is refined adaptively, is used for the computation of the infill criterion and probabilistic constraints. The algorithm is implemented on a crashworthiness optimization problem that involves a sled and dummy models subjected to an acceleration pulse. The sled model includes components of a vehicle occupant restraint system such as an airbag, seatbelt, and steering column. In all problems considered, the objective function is the probability of traumatic brain injury, which is computed through the Brain Injury Criterion (BrIC) and a logistic injury risk model. In some cases, probabilistic constraints corresponding to other types of bodily injuries such as thoracic injury are added to the optimization problem. The design variables correspond to the properties of the occupant restraint system (e.g., loading curve that dictates the airbag vent area versus pressure). In addition to the inherent simulation noise, uncertainties in the loading conditions are introduced in the form of a random scaling factor of the acceleration pulse.


Author(s):  
Pradeep Lall ◽  
Aathi Raja Ram Pandurangan ◽  
Venkata Kalyan Reddy Dornala ◽  
Jeff Suhling ◽  
John Deep ◽  
...  

Abstract Defense and Aerospace applications increasingly rely on commercial off-the shelf electronics. Electronics in defense applications may be exposed to harsh environments including high-g acceleration loads. The horizontal board configuration is most frequently tested. However, other shock orientations may be more damaging depending on technology and design. The out-of-plane displacement and strain values highly depend on the angle of shock on the electronic components in the printed circuit board. The effect of variation in drop angle under high G conditions, and efficacy of supplemental restraint mechanisms on the reliability have not been studied at high-g acceleration loads in the range of 10,000g–50,000g. In this study the reliability of fine-pitch electronics and large 3640 capacitors with C0G dielectric has been studied in presence of potting compounds, different shock orientations. A circular printed circuit board has been designed with daisy-chained packages. The drop angle has been varied from zero-degree to 30-degree. A drop-tower with dual mass shock amplifier has been used to achieve the desired acceleration pulse. Transient dynamic deformation has been measured using high-speed imaging in conjunction with digital image correlation.


Sign in / Sign up

Export Citation Format

Share Document