Abstract
The vibration signals of a planetary gearbox have the characteristics of strong background noise and instability and are non-Gaussian. Bi-spectrums can suppress Gaussian colored noise and are suitable for vibration signal processing of planetary gearboxes. In the traditional fault diagnosis methods based on bi-spectrums, the fault characteristic frequency amplitudes of bi-spectrum or bi-spectrum slices, or the further quantitative calculations of fault characteristic values, are generally used as the basis of fault diagnosis processes. It has been found that bi-spectrum images can directly characterize the faults of the planetary gearboxes. Convolutional neural networks (CNNs) have been used in mechanical fault diagnoses in recent years. One-dimensional original signals are converted into two-dimensional images as CNN input, which is an effective method for mechanical fault diagnoses. At the present time, there has not been any relevant research conducted using bi-spectral images as CNN input. In this study, a fault diagnosis method based on local bi-spectrum and CNN was proposed. A bi-spectral analysis of the vibration signals of the planetary gearbox was first carried out in order to reveal the fault information while retaining the non-Gaussian information. Then, according to the bi-spectrum symmetry, local images containing the entire domain information were taken as the input of the CNN, which reduced the redundancy of the fault information. Then, in order to improve the diagnostic accuracy of the CNN, the key parameters of CNN architecture were optimized. Finally, a CNN diagnosis model was built to realize the classification diagnoses of different fault positions and different fault degrees of planetary gearboxes. This study’s comparison of the diagnosis results of the full bi-spectrum+CNN, local bi-spectrum+SVM, original vibration signal+CNN, and local bi-spectrum+BP neural networks showed that the method proposed in this study had achieved both accuracy and rapidity in the fault diagnoses of planetary gearboxes.