strong binding
Recently Published Documents


TOTAL DOCUMENTS

282
(FIVE YEARS 83)

H-INDEX

37
(FIVE YEARS 5)

2022 ◽  
Author(s):  
Yujue Wang ◽  
Truc T. Huynh ◽  
Nilantha Bandara ◽  
Hong-Jun Cho ◽  
Buck E. Rogers ◽  
...  

Herein we report a new series of bifunctional chelators (BFCs) with high affinity for amyloid β aggregates, strong binding affinity towards Cu(II), and favorable lipophilicity for potential blood-brain barrier (BBB)...


2022 ◽  
Author(s):  
Kaiqian Chen ◽  
Yan Zhao

Regulation of enzyme activity is key to dynamic processes in biology but is difficult to achieve with synthetic systems. We here report molecularly imprinted nanoparticles with strong binding for the...


2021 ◽  
Vol 12 (3) ◽  
pp. 243-250
Author(s):  
Dhiraj Kumar ◽  
Sanjana Bhagat

The main aim of this study is to identify inhibitory binding potent of the available commercially alkaloids, against the crystal structure of acetylcholinesterase (AChE) protein by in silico studies. The inhibitory data of the compounds should be compared with the internal ligand as well as standard AChE inhibitor Aricept (which is used for the treatment of all stages of Alzheimer’s disease). AutoDock 4.0 is used for the docking study, conformational orientation site analysis, and, with the help of docking, we have calculated parameters like binding energy and inhibition constant. Docking's study showed that Glabridin, Isorosmanol, Quercetin, Honokiol, Eckol, Sargaquinoic acid, and Ginsedosides revealed strong binding affinity with the enzyme. Moreover, The ADMET profiling and physicochemical properties of the selected compounds are evaluated using the Molinspiration and Data warrior software. By showing a strong binding affinity value, positive bioactivity score, and good pharmacokinetic properties, the top compound was determined. After evaluation with all parameters, the compound Glabridin and Ginsedosides show the most potent inhibitory effect towards the acetylcholinesterase, so this compound could be used as a novel is required to treat Alzheimer's disease.


2021 ◽  
Vol 23 (1) ◽  
pp. 314
Author(s):  
Irem Avcilar-Kucukgoze ◽  
Brittany MacTaggart ◽  
Anna Kashina

Protein arginylation, mediated by arginyltransferase ATE1, is a posttranslational modification of emerging biological importance that consists of transfer of the amino acid Arg from tRNA to protein and peptide targets. ATE1 can bind tRNA and exhibits specificity toward particular tRNA types, but its dependence on the availability of the major components of the arginylation reaction has never been explored. Here we investigated key intracellular factors that can potentially regulate arginylation in vivo, including several tRNA types that show strong binding to ATE1, as well as availability of free Arg, in an attempt to identify intracellular rate limiting steps for this enzyme. Our results demonstrate that, while modulation of tRNA levels in cells does not lead to any changes in intracellular arginylation efficiency, availability of free Arg is a potentially rate-limiting factor that facilitates arginylation if added to the cultured cells. Our results broadly outline global pathways that may be involved in the regulation of arginylation in vivo.


2021 ◽  
Author(s):  
Charles Specht ◽  
E. Jane Homan ◽  
Chrono K Lee ◽  
Zhongming Mou ◽  
Christina L Gomez ◽  
...  

The high global burden of cryptococcosis has made development of a protective vaccine a public health priority. We previously demonstrated that a vaccine composed of recombinant Cryptococcus neoformans chitin deacetylase 2 (Cda2) delivered in glucan particles (GPs) protects BALB/c and C57BL/6 mice from an otherwise lethal challenge with a highly virulent C. neoformans strain. An immunoinformatic analysis of Cda2 revealed a peptide sequence predicted to have strong binding to the MHC Class II (MHC II) H2-IAd allele found in BALB/c mice. BALB/c mice vaccinated with GPs containing a 32 amino acid peptide (Cda2-Pep1) that included this strong binding region were protected from cryptococcosis. Protection was lost with GP-based vaccines containing versions of recombinant Cda2 protein and Cda2-Pep1 with mutations predicted to greatly diminish MHC II binding. Cda2 has homology to the three other C. neoformans chitin deacetylases, Cda1, Cda3 and Fpd1, in the high MHC II binding region. GPs loaded with homologous peptides of Cda1, Cda3 and Fpd1 protected BALB/c mice from experimental cryptococcosis, albeit not as robustly as the Cda2-Pep1 vaccine. Finally, seven other peptides were synthesized based on regions in Cda2 predicted to contain promising CD4+ T cell epitopes in BALB/c or C57BL/6 mice. While five peptide vaccines significantly protected BALB/c mice, only one protected C57BL/6 mice. Thus, GP-based vaccines containing a single peptide can protect mice against cryptococcosis. However, given the diversity of human MHC II alleles, a peptide-based Cryptococcus vaccine for use in humans would be challenging and likely need to contain multiple peptide sequences.


2021 ◽  
Vol 8 (9) ◽  
pp. 210974
Author(s):  
Son Tung Ngo ◽  
Khanh B. Vu ◽  
Minh Quan Pham ◽  
Nguyen Minh Tam ◽  
Phuong-Thao Tran

The winged-helix domain of the methyl methanesulfonate and ultraviolet-sensitive 81 ( w MUS81) is a potential cancer drug target. In this context, marine fungi compounds were indicated to be able to prevent w MUS81 structure via atomistic simulations. Eight compounds such as D197 ( Tryptoquivaline U ), D220 ( Epiremisporine B ), D67 ( Aspergiolide A ), D153 ( Preussomerin G ), D547 ( 12,13-dihydroxyfumitremorgin C ), D152 ( Preussomerin K ), D20 ( Marinopyrrole B ) and D559 ( Fumuquinazoline K ) were indicated that they are able to prevent the conformation of w MUS81 via forming a strong binding affinity to the enzyme via perturbation approach. The electrostatic interaction is the dominant factor in the binding process of ligands to w MUS81. The residues Trp55, Arg59, Leu62, His63 and Arg69 were found to frequently form non-bonded contacts and hydrogen bonds to inhibitors. Moreover, the influence of the ligand D197 , which formed the lowest binding free energy to w MUS81, on the structural change of enzyme was investigated using replica exchange molecular dynamics simulations. The obtained results indicated that D197 , which forms a strong binding affinity, can modify the structure of w MUS81. Overall, the marine compounds probably inhibit w MUS81 due to forming a strong binding affinity to the enzyme as well as altering the enzymic conformation.


Author(s):  
Marcos V. Palmeira-Mello ◽  
Ana B. Caballero ◽  
Aida Lopez-Espinar ◽  
Guilherme P. Guedes ◽  
Amparo Caubet ◽  
...  

AbstractTwo square-planar coordination compounds, namely [Cu(CPYA)Cl2] (1) and [Pd(CPYA)Cl2] (2), were prepared from the ligand 4-chloro-N-(pyridin-2-ylmethyl)aniline (CPYA) and two chloride salts, and were fully characterized, including by X-ray diffraction. Spectroscopic, electrophoretic and AFM studies revealed that the two isostructural compounds were interacting differently with DNA. In both cases, the initial interaction involves electrostatic contacts of the CPYA ligand in the minor groove (as suggested by molecular docking), but subsequent strong binding occurs with the palladium(II) complex 2, whereas the binding with the copper complex 1 is weaker and concentration dependent. The strong binding of 2 eventually leads to the cleavage of the double strand and the redox activity of 1 allows to oxidatively cleave the biomolecule. Graphic abstract


Author(s):  
Dhiraj Kumar ◽  
Sanjana Bhagat

The main aim of this study is to identify inhibitory binding potent of the available commercially alkaloids, against the crystal structure of acetylcholinesterase (AChE) protein by in silico studies. The inhibitory data of the compounds should be compared with the internal ligand as well as standard AChE inhibitor Aricept (which is used for the treatment of all stages of Alzheimer’s disease). AutoDock 4.0 is used for the docking study, conformational orientation site analysis, and, with the help of docking, we have calculated parameters like binding energy and inhibition constant. Docking's study showed that Glabridin, Isorosmanol, Quercetin, Honokiol, Eckol, Sargaquinoic acid, and Ginsedosides revealed strong binding affinity with the enzyme. Moreover, The ADMET profiling and physicochemical properties of the selected compounds are evaluated using the Molinspiration and Data warrior software. By showing a strong binding affinity value, positive bioactivity score, and good pharmacokinetic properties, the top compound was determined. After evaluation with all parameters, the compound Glabridin and Ginsedosides show the most potent inhibitory effect towards the acetylcholinesterase, so this compound could be used as a novel is required to treat Alzheimer's disease.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Reham M. Elhassan ◽  
Nagla M. Alsony ◽  
Khadeejah M. Othman ◽  
Duaa T. Izz-Aldin ◽  
Tamadour A. Alhaj ◽  
...  

Introduction. Cryptococcosis is a ubiquitous opportunistic fungal disease caused by Cryptococcus neoformans var. grubii. It has high global morbidity and mortality among HIV patients and non-HIV carriers with 99% and 95%, respectively. Furthermore, the increasing prevalence of undesired toxicity profile of antifungal, multidrug-resistant organisms and the scarcity of FDA-authorized vaccines were the hallmark in the present days. This study was undertaken to design a reliable epitope-based peptide vaccine through targeting highly conserved immunodominant heat shock 70 kDa protein of Cryptococcus neoformans var. grubii that covers a considerable digit of the world population through implementing a computational vaccinology approach. Materials and Methods. A total of 38 sequences of Cryptococcus neoformans var. grubii’s heat shock 70 kDa protein were retrieved from the NCBI protein database. Different prediction tools were used to analyze the aforementioned protein at the Immune Epitope Database (IEDB) to discriminate the most promising T-cell and B-cell epitopes. The proposed T-cell epitopes were subjected to the population coverage analysis tool to compute the global population’s coverage. Finally, the T-cell projected epitopes were ranked based on their binding scores and modes using AutoDock Vina software. Results and Discussion. The epitopes (ANYVQASEK, QSEKPKNVNPVI, SEKPKNVNPVI, and EKPKNVNPVI) had shown very strong binding affinity and immunogenic properties to B-cell. (FTQLVAAYL, YVYDTRGKL) and (FFGGKVLNF, FINAQLVDV, and FDYALVQHF) exhibited a very strong binding affinity to MHC-I and MHC-II, respectively, with high population coverage for each, while FYRQGAFEL has shown promising results in terms of its binding profile to MHC-II and MHC-I alleles and good strength of binding when docked with HLA-C ∗ 12:03. In addition, there is massive global population coverage in the three coverage modes. Accordingly, our in silico vaccine is expected to be the future epitope-based peptide vaccine against Cryptococcus neoformans var. grubii that covers a significant figure of the entire world citizens.


2021 ◽  
Author(s):  
Tomio Iwasaki ◽  
Masashi Maruyama ◽  
Tatsuya Niwa ◽  
Toshiki Sawada ◽  
Takeshi Serizawa

AbstractPeptides with strong binding affinities for poly(methyl methacrylate) (PMMA) resin were designed by use of materials informatics technology based on molecular dynamics simulation for the purpose of covering the resin surface with adhesive peptides, which were expected to result in eco-friendly and biocompatible biomaterials. From the results of binding affinity obtained with this molecular simulation, it was confirmed that experimental values could be predicted with errors <10%. By analyzing the simulation data with the response-surface method, we found that three peptides (RWWRPWW, EWWRPWR, and RWWRPWR), which consist of arginine (R), tryptophan (W), and proline (P), have strong binding affinity to the PMMA resin. These amino acids were effective because arginine and tryptophan have strong binding affinities for methoxycarbonyl groups and methyl groups, which are the main constituents of the PMMA resin, and proline stabilizes the flat zigzag structures of the peptides in water. The strong binding affinities of the three peptides were confirmed by experiments (surface plasmon resonance methods).


Sign in / Sign up

Export Citation Format

Share Document