passivation process
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 11)

H-INDEX

15
(FIVE YEARS 1)

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7789
Author(s):  
Inho Bae ◽  
Byung-Hoon Kim ◽  
Dong-Gon Kim ◽  
Ik-Bu Sohn ◽  
Seong-Won Yang

Corrosion of nitinol (NiTi) is a major factor in the failure of implantable materials. Recently, as the importance of corrosion of metals has increased, testing according to international guidelines is essential. The purpose of this study was to evaluate the corrosion resistance of NiTi wire through heat treatment and passivation process. In this study, NiTi wire used two commercially available products and a self-manufactured stent. Experimental consideration was carried out according to ASTM standards. Heat treatment was carried out in an air or a salt furnace, and the corrosion was measured after additional process, such as passivation and scratch tests. As a result, the metal potential was rapidly decreased in the air furnace group. On the other hand, the potential of wires was dramatically increased in the salt furnace group compared to the air furnace group. The dislocation decreased below the acceptance criteria (>600 mV) within 60 s of heat treatment time in the air furnace. Moreover, the potential was dramatically improved, even after only 20 min of passivation treatment (1076 mV, 442% compared to the non-passivated group), and it continued to rise until 180 min. This phenomenon was similarly observed in the group of self-manufactured stents. The potential slightly decreased by the scratch process (93.1%) was significantly reduced by the air furnace process (315 mV, 24.4% of the nontreated group). In the passivated group of the air furnace sample with reduced potential, the potential was restored to the level before the air furnace (scratch stage) (1032 mV). In conclusion, the heat treatment is preferably carried out in a salt furnace rather than an air furnace, and the passivation process can be an advantageous tool to improve corrosion resistance by suppressing the oxidation process.


Crystals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 403
Author(s):  
Junchi Yu ◽  
Tao Tao ◽  
Bin Liu ◽  
Feifan Xu ◽  
Yao Zheng ◽  
...  

Micro-light emitting diodes (Micro-LEDs) based on III-nitride semiconductors have become a research hotspot in the field of high-resolution display due to its unique advantages. However, the edge effect caused by inductively coupled plasma (ICP) dry etching in Micro-LEDs become significant with respect to the decreased chip size, resulting in a great reduction in device performance. In this article, sector-shaped GaN-based blue Micro-LEDs are designed and fabricated. Additionally, the device performance of different size Micro-LEDs with passivation are investigated with respect to those without passivation. Several methods have been applied to minimize the etching damage near the edge, including acid-base wet etching and SiO2 passivation layer growth. The room temperature photoluminescence (PL) results demonstrate that the light emission intensity of Micro-LEDs can be significantly enhanced by optimized passivation process. PL mapping images show that the overall luminescence of properly passivated Micro-LEDs is enhanced, the uniformity is improved, and the effective luminescence area is increased. The recombination lifetime of carriers in Micro-LEDs are increased by the usage of passivation process, which proves the reduction in non-radiative recombination centers in Micro-LEDs and improved luminescence efficiency. As a result, the internal quantum efficiency (IQE) is improved from 14.9% to 37.6% for 10 μm Micro-LEDs, and from 18.3% to 26.9% for 5 μm Micro-LEDs.


Crystals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 842 ◽  
Author(s):  
Myoung-Jin Kang ◽  
Hyun-Seop Kim ◽  
Ho-Young Cha ◽  
Kwang-Seok Seo

We optimized a silicon nitride (SiNx) passivation process using a catalytic-chemical vapor deposition (Cat-CVD) system to suppress the current collapse phenomenon of AlGaN/GaN-on-Si high electron mobility transistors (HEMTs). The optimized Cat-CVD SiNx film exhibited a high film density of 2.7 g/cm3 with a low wet etch rate (buffered oxide etchant (BOE) 10:1) of 2 nm/min and a breakdown field of 8.2 MV/cm. The AlGaN/GaN-on-Si HEMT fabricated by the optimized Cat-CVD SiNx passivation process, which had a gate length of 1.5 μm and a source-to-drain distance of 6 μm, exhibited the maximum drain current density of 670 mA/mm and the maximum transconductance of 162 mS/mm with negligible hysteresis. We found that the optimized SiNx film had positive charges, which were responsible for suppressing the current collapse phenomenon.


Solar RRL ◽  
2020 ◽  
Vol 4 (10) ◽  
pp. 2000290 ◽  
Author(s):  
Yunxiang Zhang ◽  
Zhaojing Hu ◽  
Shuping Lin ◽  
Chaojie Wang ◽  
Shiqing Cheng ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 452
Author(s):  
Rodrigo Sanchotene Silva ◽  
Álvaro Meneguzzi

This paper presents the production of an epoxy paint associated with a determined concentration of PAni emeraldine base binder, in order to increase dispersion of PAni polymer chains in the paint allow physical contact between PAni chains, the electrolytic medium, and the metal of interest. The coating called Intelligent Epoxy Paint (IEP) seeks to potentialize the electrolytic capacity of PAni to produce passivation, differentiated research which uses PAni in oxidized and conductive form as paint pigment that needs high PAni concentrations. The physicochemical characterization and morphological presented results that indicate the preservation of the desirable properties of PAni in order to make the passivation process possible. The electrochemical tests showed the passivation and/or maintenance of the passivation of the metal of interest, without the need to apply an external current.


2020 ◽  
Vol 10 (2) ◽  
pp. 243-258
Author(s):  
Jorge Alberto Briceño-Mena ◽  
Mercedes Guadalupe Balancán-Zapata ◽  
Pedro Castro Borges

The passivation process quality was studied considering polarization periodicity, passivation consolidation parameters, and data processing. Passivation process quality in steel reinforcement affects a structure’s planned future service life. Some research has addressed this phenomenon, but its study is complicated by the limits of analog-era data, dispersion in corrosion rate data, and their interpretation. Two series of small reinforced concrete specimens were built using two water/cement ratios and two curing/storage combinations and exposed to the marine environment. Polarization periodicity did not affect passivation/depassivation during passivation but on the data processing. The curing and storage process influenced the tendency towards depassivation. Post-curing storage type affected the cumulative corrosion rate from 1 to 5 μA*day/cm2; this is equivalent to the margin of uncertainty in interpretation.


2020 ◽  
Vol 10 (7) ◽  
pp. 2427
Author(s):  
Rongbin She ◽  
Wenquan Liu ◽  
Guanglu Wei ◽  
Yuanfu Lu ◽  
Guangyuan Li

We demonstrate terahertz single-pixel imaging is improved by using a photomodulator based on silicon passivated with SiO 2 . By exploring various SiO 2 thicknesses, we show that the modulation factor of the as-fabricated terahertz photomodulator can reach 0.9, three times that based on bare silicon. This improvement originates from chemical passivation, as well as anti-reflection. Single-pixel imaging experiments based on the compressed sensing method show that reconstructed images adopting the new photomodulator have better quality than the conventional terahertz modulator based on bare silicon. Since the passivation process is routine and low cost, we expect this work will reduce the cost of terahertz photomodulator and single-pixel THz imaging, and advance their applications.


2019 ◽  
Vol 369 ◽  
pp. 979-987 ◽  
Author(s):  
Liwen Zhang ◽  
Zhongbo Shang ◽  
Kaixuan Guo ◽  
Zhixian Chang ◽  
Hongling Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document