root length density
Recently Published Documents


TOTAL DOCUMENTS

272
(FIVE YEARS 76)

H-INDEX

28
(FIVE YEARS 2)

Agronomy ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 48
Author(s):  
Tábata Aline Bublitz ◽  
Roman Kemper ◽  
Phillip Müller ◽  
Timo Kautz ◽  
Thomas F. Döring ◽  
...  

Different methods have been proposed for in situ root-length density (RLD) measurement. One widely employed is the time-consuming sampling of soil cores or monoliths (MO). The profile wall (PW) method is a less precise, but faster and less laborious alternative. However, depth-differentiated functions to convert PW RLD estimates to MO RLD measurements have not yet been reported. In this study, we perform a regression analysis to relate PW results to MO results and determine whether calibration is possible for distinct crop groups (grasses, brassicas and legumes) consisting of pure and mixed stands, and whether soil depth affects this calibration. The methods were applied over two years to all crop groups and their absolute and cumulative RLD were compared using a linear (LR) and multiple linear (MLR) regression. PW RLD was found to highly underestimate MO RLD in absolute values and in highly rooted areas. However, a close agreement between both methods was found for cumulative root-length (RL) when applying MLR, highlighting the influence of soil depth. The level of agreement between methods varied strongly with depth. Therefore, the application of PW as the main RLD estimation method can provide reliable estimates of cumulative root distribution traits of cover crops.


2021 ◽  
Author(s):  
Jingru Zhang ◽  
Zhengkun Hu ◽  
Chongzhe Zhang ◽  
Yiheng Tao ◽  
Xiaoyun Chen ◽  
...  

Abstract Aims Roots bridge above and belowground systems, and play a pivotal role in structuring root-associated organisms via influencing food resources and habitat conditions. Most studies focused on the relationships between plant identity and root-associated organisms, however, little is known about how root traits affect nematode communities within the rhizosphere. Methods We investigated the relationships between root traits of four plant species and nematode diversity, community structure and trophic complexity in an ex-arable field. Results While the relative abundance of herbivorous nematodes was negatively associated with specific root length (SRL), specific root area (SRA), root length density (RLD) and root C: N ratio, free-living nematodes were positively affected by these traits, implying a multifaceted effect of root traits on root-associated organisms. Importantly, we found that finer root systems promoted the complexity of the nematode community, by increasing the relative abundance of high trophic-level nematodes (i.e., omnivores and predators) and enhancing nematode diversity. Conclusion Our findings suggest that root traits could be reliable indicators of soil community structure and interactions, and provide new insights into soil biodiversity and functional maintenance.


2021 ◽  
Vol 53 (2) ◽  
pp. 157-164
Author(s):  
José Jesús Obrador-Olán ◽  
Mepivoseth Castelán-Estrada ◽  
Alberto Córdova Sánchez ◽  
Sergio Salgado-García ◽  
Eustolia García-López ◽  
...  

The tight relationship between root architecture and uptake capacity of soil water and minerals, is well established. Support roots, generally long-lived, perform support functions such as transportation and food storage. Absorbing roots, thin and short-lived, absorb nutrients and regulate plant metabolism. Roots distribution in the soil profile is crucial for plant development. It optimizes resource usage and ensures a prompt response to seasonal changes. This work aimed to study the vertical distribution of the root system of nine-year-old oil palms in a haplic Luvisol, low fertility, moderately acidic, with Nitrogen (N) and Potassium (K) deficiency, average content of Phosphorous (P), and medium to low Cation Exchange Capacity (CEC). Using the cylinder method, soil samples were collected every 10 cm and down to 150 cm of soil depth, from each cardinal side of three soil profiles. The results showed that oil palms had good root development. Most roots (73%) were found in the first 30 cm of soil, with a predominance of fine roots (78%). At 50 cm in depth, fine roots represented 88%, thin roots, 67% and medium roots, 94%. Further study should assess root length density at 15, 20, 25, and 30 years. Highlights - Haplic luvisols are optimal soils for oil palm cultivation due to their depth (> 150cm), over 50% base saturation, and pH of 5.5-6.6. - Root length density (RLD) decreased as soil depth increased. Although most oil palm roots are found in surface horizons, roots can still be found at depths of up to 1.5-5 m. - The highest number of oil palm roots (73%) was found in the first 30 cm, with 78% of fine roots. - Fine roots were distributed throughout the entire soil profile, evidencing  high nutrient-absorption and metabolic activities.


Author(s):  
Igor N. de Castro ◽  
Silvânio R. dos Santos ◽  
Marcelo R. dos Santos ◽  
Polyanna M. de Oliveira ◽  
Ignacio Aspiazú ◽  
...  

ABSTRACT Knowledge of the cactus pear root distribution system can improve management of the plant by defining the areas of soil best suited to fertilizer application and the installation of soil moisture sensors under irrigation. Thus, the aim of the present study was to assess the root distribution of cactus pear genotypes under different water replacement levels. To that end, a field experiment was conducted in a randomized block design, using genetic material from two cactus pear genotypes (Opuntia fícus-indica Mill. and Nopalea cochenillifera Salm-Dyck) and six water replacement levels based on reference evapotranspiration - ET0 (T1, no irrigation; T2, 15%; T3, 30%; T4, 45%; T5, 60% and T6, 75% of ET0), arranged in split-plot, with irrigation treatments allocated to the plots and the genetic material to the sub-plots, and three replicates. The roots of the cultivars were collected for analysis of root length density (RLD) 390 days after planting. The RDL of very fine roots declines as depth and distance from the plant base increases and total, fine, small and medium RDL rise at higher water replacement levels; 75% of ET0 near the plant base increases RDL; all the root diameter classes are concentrated at a distance of 0-0.20 m from the plant base and depth of 0.10 to 0.25 m; the RDL percentage is higher for the Gigante genotype and Miuda exhibits better root distribution.


Author(s):  
Ioannis ROUSSIS ◽  
Antonios MAVROEIDIS ◽  
Ioanna KAKABOUKI ◽  
Aspasia EFTHIMIADOU ◽  
Nikolaos KATSENIOS ◽  
...  

A greenhouse pot experiment was conducted in Western Greece in order to evaluate the effect of different nitrogen rates on the development of the root system and productivity of chia (Salvia hispanica L.) plant. The experiment followed a completely randomized design (CRD), with six treatments, different rates of applied nitrogen (0, 25, 50, 75, 100 and 125 kg ha-1 equivalent to 0, 134, 268, 402, 536 and 670 mg nitrogen pot-1). The results of this study showed that root length density (RLD) and root mass density (RMD) increased with the increased rate of applied nitrogen and the highest values (1.297 cm cm-3 and 1.178 mg cm-3, respectively) were found after the application of 670 mg nitrogen pot-1 at 100 days after sowing (DAS). Plant height (106.06 cm) and leaf area per plant (883.14 cm2) were significantly affected by the highest rate of nitrogen. Additionally, dry matter and seed yield per plant were clearly affected by fertilization, with the highest values (27.57 g and 4.20 g, respectively) obtained in plants treated with 670 mg nitrogen pot-1. In conclusion, increasing the levels of applied nitrogen up to 670 mg N pot-1 improves root development and therefore the yields of chia.


Author(s):  
Christian W. Kuppe ◽  
Guy J D Kirk ◽  
Matthias Wissuwa ◽  
Johannes A Postma

Upland rice (Oryza sativa) is adapted to strongly phosphorus (P) sorbing soils. The mechanisms underlying P acquisition, however, are not well understood, and models typically underestimate uptake. This complicates root ideotype development and trait-based selection for further improvement. We present a novel model, which correctly simulates the P uptake by a P-efficient rice genotype measured over 48 days of growth. The model represents root morphology at the local rhizosphere scale, including root hairs and fine S-type laterals. It simulates fast-and slowly reacting soil P and the P-solubilizing effect of root-induced pH changes in the soil. Simulations predict that the zone of pH changes and P solubilization around a root spreads further into the soil than the zone of P depletion. A root needs to place laterals outside its depletion-but inside its solubilization zone to maximize P uptake. S-type laterals, which are short but hairy, appear to be the key root structures to achieve that. Thus, thicker roots facilitate the P uptake by fine lateral roots. Uptake can be enhanced through longer root hairs and greater root length density but was less sensitive to total root length and root class proportions.


2021 ◽  
Author(s):  
Jayant H. Meshram ◽  
Sunil S. Mahajan ◽  
Dipak Nagrale ◽  
Nandini Gokte-Narkhedkar ◽  
Harish Kumbhalkar

Cotton is an important commercial crop grown in India. It occupies an area of about 12.7 million hectares and is grown both in irrigated as well as rainfed tracts. In such situations, roots are very important organ for plant growth and development, since they act as anchors, providing mechanical support, and chemical extractors for the growing plant. Root length density sets the proportion of water uptake both under wet conditions and dry soils. Cotton plants with efficient root system capture water and nutrients from soil having these features of longer tap root. It is widely accepted that breeding efforts on aboveground traits are not sufficient to the necessary yield advantage. Shifting the emphasis to analyzing the root system would provide an additional means to enhance yield under changing climatic condition. Belowground image analysis studies point to the importance of root system architecture for optimizing roots and rhizosphere dynamics for sustainable cotton production. In this review, we describe the cotton root biological context in which root-environment interactions providing an overview of the root growth morphology species wise, phytohormone action that control root growth, root anatomical significance in drying soils, biotic and abiotic stresses involved in controlling root growth and environmental responses.


Plants ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2177
Author(s):  
Felix Frimpong ◽  
Michael Anokye ◽  
Carel W. Windt ◽  
Ali A. Naz ◽  
Michael Frei ◽  
...  

A vigorous root system in barley promotes water uptake from the soil under water-limited conditions. We investigated three spring barley genotypes with varying water stress responses using rhizoboxes at the seedling stage. The genotypes comprised two elite German cultivars, Barke and Scarlett, and a near-isogenic line, NIL 143. The isogenic line harbors the wild allele pyrroline-5-carboxylate synthase1-P5cs1. Root growth in rhizoboxes under reduced water availability conditions caused a significant reduction in total root length, rooting depth, root maximum width, and root length density. On average, root growth was reduced by more than 20% due to water stress. Differences in organ proline concentrations were observed for all genotypes, with shoots grown under water stress exhibiting at least a 30% higher concentration than the roots. Drought induced higher leaf and root proline concentrations in NIL 143 compared with any of the other genotypes. Under reduced water availability conditions, NIL 143 showed less severe symptoms of drought, higher lateral root length, rooting depth, maximum root width, root length density, and convex hull area compared with Barke and Scarlett. Within the same comparison, under water stress, NIL 143 had a higher proportion of lateral roots (+30%), which were also placed at deeper substrate horizons. NIL 143 had a less negative plant water potential and higher relative leaf water content and stomatal conductance compared with the other genotypes under water stress. Under these conditions, this genotype also maintained an enhanced net photosynthetic rate and exhibited considerable fine root growth (diameter class 0.05–0.35 mm). These results show that water stress induces increased shoot and root proline accumulation in the NIL 143 barley genotype at the seedling stage and that this effect is associated with increased lateral root growth.


2021 ◽  
Vol 23 (3) ◽  
pp. 257-264
Author(s):  
SHRUTHI REDDY L ◽  
GOPALA KRISHNA REDDY A ◽  
VANAJA. M ◽  
MARUTHI. V. ◽  
VANAJA LATHA. K.

An experiment was laid out to study the impact of eCO2 (550ppm), eT (+3ºC) and their interaction (eCO2+eT) on rooting behaviour of cuttings of three grape varieties- Thompson Seedless, Bangalore Blue, and Dogridge in FATE and OTC facilities. Observations were recorded at 50 and 80 days after planting (DAP) and root growth data was recorded and analysed using WinRHIZO root scanner and its software. Analysis revealed that, among the selected grape varieties, Thompson Seedless cuttings has shown highest number of roots, root volume and dry biomass under eCO2 and eCO2+ eT conditions, while total root length and root length density were highest with Bangalore Blue. Under eT condition, Bangalore Blue showed highest number of roots, total root length and root length density, while root volume and dry biomass was highest with Thompson Seedless. The per se values of root parameters under all conditions and their response to eCO2 was lowest with Dogridge. Though eT condition reduced all the root parameters, their performance improved under eCO2+ eT indicating the presence of higher concentration of CO2 reduced the ill effects of high temperature. Overall, eCO2 and eCO2+eT conditions improved root parameters of grape varieties, while eT reduced them as compared to their performance under ambient condition and varietal variation is significant.


Sign in / Sign up

Export Citation Format

Share Document