subgrain size
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 15)

H-INDEX

20
(FIVE YEARS 1)

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Jiankun Xiong ◽  
Jianping Yang ◽  
Haiyan Zhao ◽  
Lin Yang ◽  
Yang Guo ◽  
...  

Creep rupture behavior of dissimilar weldments between FB2 and 30Cr1Mo1V heat-resistant steel by multipass welding at 783 K (510°C) under different stresses (260 to 420 MPa) was researched. The fitted creep rupture exponent is 14.53, and the 10,000 h extrapolating strength values predicted by the power law and Larson-Miller parameter show good agreement with experimental data. The samples exhibit a ductile fracture character and fracture in the weld fusion zone, which has a highly heterogeneous microstructure and grains with different morphologies and sizes and an obvious softening. There exist a decrease in the dislocation and precipitate density and an increase in the subgrain size in the weld metal after creep. The rupture is a transgranular fracture characterized by dimples as a result of microvoid coalescence. Laves phases along with copper-rich precipitates are observed in the vicinity of fracture surface, which creates a stress concentration that can cause transgranular fracture initiation.


2021 ◽  
Vol 2144 (1) ◽  
pp. 012019
Author(s):  
S V Savushkina ◽  
A M Borisov ◽  
I V Suminov ◽  
E V Vysotina ◽  
A A Ashmarin

Abstract Nanostructured and nanocomposite layers NiCoCrAlY+ ZrO2-7%Y2O3, ZrO2-7% Y2O3+HfO2-9%Y2O3, HfO2-9%Y2O3 with thickness of ∽ 20 μm were formed by low pressure plasma spraying. The structure and composition of the layers have been studied using a scanning electron microscopy, X-ray microanalysis, and XRD analysis. Thermal stability of the coatings has been analyzed using synchronous thermal analysis at temperatures up to 1600 °C. The results of structure and composition analysis of ZrO2-7%Y2O3+HfO2-9%Y2O3 layer suggest the formation ofnanocomposite co-doped regions of the ZrO2-HfO2-Y2O3 solid solution. The layer has greater thermal stability at temperatures up to 1600 ° C and a smaller subgrain size (∽ 33 nm) than for the ZrO2-7% Y2O3 and HfO2-9%Y2O3 layers.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5190
Author(s):  
Aleksandr M. Filimonov ◽  
Oleg A. Rogozin ◽  
Oleg N. Dubinin ◽  
Yulia O. Kuzminova ◽  
Anastasia A. Shibalova ◽  
...  

The superimposed magnetic field affects the microstructure and mechanical properties of additively manufactured metal parts. In this work, the samples were fabricated from Inconel 718 superalloy by directed energy deposition under a 0.2 T static field. The magnetohydrodynamic 1D model is proposed for the estimation of a fluid flow inside a molten pool. According to the theoretical predictions, the fluid flow is slightly decreased by an applied field. The estimated thermoelectric magnetic convection in the mushy zone is shown to be negligible to change in subgrain size, but enough to reduce the hard-to-dissolve Nb-rich phase, thereby improving the average ultimate elongation from 23% to 27%. The obtained results confirm that an external static magnetic field can modify and enhance the mechanical properties of additively manufactured materials.


Metals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 119
Author(s):  
Elena P. Ryklina ◽  
Kristina A. Polyakova ◽  
Sergey D. Prokoshkin

The shape recovery characteristics of titanium nickelide with an Ni content of 50.0 at % and 50.7 at % were studied in a wide range of structures obtained as a result of cold drawing with an accumulated true strain of e = 0.52 and subsequent annealing in the 250 to 700 °C temperature range. Shape memory effect (SME) inducing was carried out by bending using a non-isothermal loading mode, which made it possible to reveal implementing elastic strain in the equiatomic alloy up to 12% and thereby increase the total shape recovery by a factor of 1.5. The obtained results prove that the Ni content strongly affects the value and specific features of changes of the shape recovery characteristics with loading strain as well as grain/subgrain size. In equiatomic alloy, the total recovery strain manifests its maximum of 13.5–15% and the recovery strain of 9% at a loading strain range of 12 to 14%. In Ni-rich alloy, the total recovery strain manifests its maximum of 20% and the recovery strain of 14% at a loading strain range of 15 to 21%. The maximum two-way SME value correlates with the residual strain in both alloys and reaches its maximum of 3.0% in a material with a recrystallized structure. Varying the loading strain value under bending in the 11 to 21% range allows regulation of the temperature of shape recovery in Ni-rich alloy in the 45 to 80 °C range.


Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5678
Author(s):  
Ricardo Henrique Buzolin ◽  
Franz Miller Branco Ferraz ◽  
Michael Lasnik ◽  
Alfred Krumphals ◽  
Maria Cecilia Poletti

Two different mesoscale models based on dislocation reactions are developed and applied to predict both the flow stress and the microstructure evolution during the hot deformation of titanium alloys. Three distinct populations of dislocations, named mobile, immobile, and wall dislocations, describe the microstructure, together with the crystal misorientation and the densities of boundaries. A simple model consisting of production and recovery terms for the evolution of dislocations is compared with a comprehensive model that describes the reactions between different type of dislocations. Constitutive equations connect the microstructure evolution with the flow stresses. Both models consider the formation of a high angle grain boundary by continuous dynamic recrystallization due to progressive lattice rotation. The wall dislocation density evolution is calculated as a result of the subgrain size and boundary misorientation distribution evolutions. The developed models are applied to two near-β titanium alloys, Ti-5553 and Ti-17, and validated for use in hot compression experiments. The differences in the predictability between the developed models are discussed for the flow stress, dislocation densities and microstructure evolutions. Only the comprehensive model can predict the different reactions and their contributions to the evolution of mobile and immobile dislocation densities. The comprehensive model also allows for correlating the elastic strain rate with the softening and hardening kinetics. Despite those differences, the selection of the model used has a small influence on the overall prediction of the subgrain size and the fraction of high angle grain boundaries.


2020 ◽  
Vol 47 (23) ◽  
Author(s):  
R. M. Goddard ◽  
L. N. Hansen ◽  
D. Wallis ◽  
M. Stipp ◽  
C. W. Holyoke ◽  
...  
Keyword(s):  

Metals ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1612
Author(s):  
Fevzi Kafexhiu ◽  
Jaka Burja

The purpose of the present study was to evaluate the contribution of distinct regions of the simulated heat-affected zone (HAZ) to the overall creep behavior of welded joints in the X20 and P91 steels. The HAZ was simulated by means of dilatometry at four peak temperatures (900, 1000, 1200, and 1350 °C) with a consequent tempering at 650 °C. Microstructure features of the four simulated HAZ regions including precipitates, prior austenite grains, and subgrains were quantified by means of electron microscopy. The quantified parameters and the measured hardness were used in three physical models for evaluation of the stationary creep rate (ε˙ at 170 MPa and 580 °C. The resulting ε˙ values fall within the range 10−8–10−7 s−1, being in good agreement with the experimental data with a similar thermal history, but an order of magnitude lower than the measured values for the parent metal of the studied steels (10−7–10−6 s−1). Depending on the model utilized, their output can be linearly related to hardness, subgrain size, or interparticle spacing. The model relating ε˙ to hardness was the most consistent one in prediction, being always lower for higher peak temperatures.


Crystals ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 691
Author(s):  
Bertalan Jóni ◽  
Éva Ódor ◽  
Mia Maric ◽  
Wolfgang Pantleon ◽  
Tamás Ungár

A novel X-ray diffraction-based method and computer program X-TEX has been developed to determine the microstructure in individual texture components of polycrystalline, textured materials. Two different approaches are presented. In the first one, based on the texture of the specimen, the X-TEX software provides optimized specimen orientations for X-ray diffraction experiments in which diffraction peaks consist of intensity contributions stemming from grain populations of separate texture components in the specimen. Texture-specific diffraction patterns can be created by putting such peaks together from different measurements into an artificial pattern for each texture component. In the second one, the X-TEX software can determine the intensity contributions of different texture components to diffraction peaks measured in a particular sample orientation. According to this, peaks belonging mainly to one of the present texture components are identified and grouped into the same quasi-phase during the evaluation procedure. The X-TEX method was applied and tested on tensile-deformed, textured, commercially pure titanium samples. The patterns were evaluated by the convolutional multiple whole profile (CMWP) procedure of line profile analysis for dislocation densities, dipole character, slip systems and subgrain size for three different texture components of the Ti specimens. Significant differences were found in the microstructure evolution in the two major and the random texture components. The dislocation densities were discussed by the Taylor model of work hardening.


2020 ◽  
Author(s):  
Rellie M. Goddard ◽  
Lars N. Hansen ◽  
David Wallis ◽  
Michael Stipp ◽  
Caleb W. Holyoke ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document