ohmic behavior
Recently Published Documents


TOTAL DOCUMENTS

169
(FIVE YEARS 23)

H-INDEX

19
(FIVE YEARS 2)

Author(s):  
Vuong Van Cuong ◽  
Tadashi Sato ◽  
Takamichi Miyazaki ◽  
Tetsuya Meguro ◽  
Seiji Ishikawa ◽  
...  

Abstract The reliability of Ni/Nb ohmic contact on n-type 4H-SiC at 500℃ was investigated. The current-voltage characteristics showed that, while the Ni(50)/Nb(50)/4H-SiC sample without applying the CF4:O2 etching process degraded just after 25-hour and lost ohmic behavior after 50-hour aging, the Ni(75)/Nb(25)/4H-SiC contact undergone CF4:O2 surface treatment still showed excellent stability after aging for 100 hours at 500℃. Though X-ray diffraction results indicated that the chemical compounds remained stable during the aging process, transmission electron microscopy showed that there was a redistribution of the chemical compounds at the interface of the contact after 500℃ aging. The depth distribution of the elements and energy dispersive X-ray analyses revealed that the contribution of carbon agglomeration at the interface accounted for the degradation of the sample without applying the etching process. Whereas the well-controlled excess carbon atoms of the contact undergone CF4:O2 treatment ensured the stability of this contact when operating at high-temperature ambient.


Processes ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1776
Author(s):  
María Elena Sánchez Vergara ◽  
Sergio Barrientos Ramirez ◽  
Rafael Loaiza Alanis ◽  
Georgina Montes de Oca Ramírez ◽  
María Dolores Baeza Alvarado ◽  
...  

The development of small semiconductor molecules such as the maleiperinone, have gained importance due to their applications in optoelectronics. In this work semiconductor films composed by a polymer matrix of PEDOT:PSS (poly(3,4-ethylenedioxythiophene) polystyrene sulfonate) and maleiperinone were manufactured. The films used in the studies were deposited by vacuum evaporation and spin-coating techniques. Atomic force microscopy (AFM), scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and Infrared spectroscopy were used for the analysis of morphological and structural films. The fundamental and the onset of the direct and indirect band gaps were also obtained by UV-vis spectroscopy. The band-model theory and the Density-functional theory (DFT) calculations were applied to determine the optical parameters. The dipole moment is 3.33 Db, and the high polarity gives a signal of the heterogeneous charge distribution along the structure of maleiperinone. Simple devices were made from the films and their electrical behavior was subsequently evaluated. The presence of the polymer decreased the energy barrier between the film and the anode, favoring the transport of charges in the device. Graphene decreased the absorption and its ohmic behavior make it a candidate to be used as a transparent electrode in optoelectronic devices. Finally, the MoO3 provides a behavior similar to a dielectric.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4243
Author(s):  
Byeong-Jun Park ◽  
Jeong-Hoon Seol ◽  
Sung-Ho Hahm

Asymmetric metal-semiconductor-metal (MSM) aluminum gallium nitride (AlGaN) UV sensors with 24% Al were fabricated using a selective annealing technique that dramatically reduced the dark current density and improved the ohmic behavior and performance compared to a non-annealed sensor. Its dark current density at a bias of −2.0 V and UV-to-visible rejection ratio (UVRR) at a bias of −7.0 V were 8.5 × 10−10 A/cm2 and 672, respectively, which are significant improvements over a non-annealed sensor with a dark current density of 1.3 × 10−7 A/cm2 and UVRR of 84, respectively. The results of a transmission electron microscopy analysis demonstrate that the annealing process caused interdiffusion between the metal layers; the contact behavior between Ti/Al/Ni/Au and AlGaN changed from rectifying to ohmic behavior. The findings from an X-ray photoelectron spectroscopy analysis revealed that the O 1s binding energy peak intensity associated with Ga oxide, which causes current leakage from the AlGaN surface, decreased from around 846 to 598 counts/s after selective annealing.


Surfaces ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 157-168
Author(s):  
Martina Vizza ◽  
Giulio Pappaianni ◽  
Walter Giurlani ◽  
Andrea Stefani ◽  
Roberto Giovanardi ◽  
...  

Conductive polymers are nowadays attracting great attention for their peculiar mechanical, electrical and optical proprieties. In particular, PEDOT can be used in a wide range of innovative applications, from electroluminescent devices to photovoltaics. In this work, the electrochemical deposition of 3,4 ethylenedioxythiophene (EDOT) was performed on various substrates (ITO, thin films of gold and palladium on silicon wafers) by means of both potentiostatic and potentiodynamic techniques. This was intended to further expand the applications of electrochemically deposited PEDOT, particularly regarding the preparation of thin films in tight contact with electrode surfaces. This allows one to obtain systems prone to be used as electrodes in stacked devices. Chronoamperometric experiments were performed to study the nucleation and growth process of PEDOT. SEM, ESEM and AFM analysis allowed the characterization of the morphology of the polymeric films obtained. Raman and visible spectroscopy confirmed the high-quality of the coatings on the different substrates. Then, the PEDOT films were used as the base material for the further electrodeposition of a copper layer. In this way, a hybrid electronic device was obtained, by using electrochemical methods only. The high conductivity and ohmic behavior of the device were confirmed over a wide range of frequencies with electrical impedance spectroscopy analysis.


Molecules ◽  
2020 ◽  
Vol 25 (24) ◽  
pp. 5800
Author(s):  
María Elena Sánchez-Vergara ◽  
Citlalli Rios ◽  
Omar Jiménez-Sandoval ◽  
Roberto Salcedo

The structure formed by cobalt phthalocyanine (CoPc) and cobalt octaethylporphyrin (CoOEP) with electron-acceptor tetracyano-π-quinodimethane (TCNQ), was studied by Density Functional Theory (DFT) methods. According to theoretical calculations, both cobalt systems can establish dispersion forces related to TCNQ and also in both cases the link between them is built by means of hydrogen bonds. Based on the results of these DFT calculations, we developed experimental work: the organic semiconductors were doped, and the thermal evaporation technique was used to prepare semiconductor thin films of such compounds. The structure of the films was studied by FTIR and Raman spectroscopy. The optical properties of the CoPc-TCNQ and CoOEP-TCNQ films were investigated by means of UV-Vis measurements. The results obtained were used to estimate the type of transitions and the optical bandgap. The results were compared to the previously calculated theoretical bandgap. The CoOEP-TCNQ film presented the smallest theoretical and experimental bandgap. Finally, the electrical properties of the organic semiconductors were evaluated from a PET (polyethylene terephthalate)/indium tin oxide (ITO)/cobalt macrocycle-TCNQ/silver (Ag) device we prepared. The CoOEP-TCNQ-based device showed an ohmic behavior. The device manufactured from CoPc-TCNQ also showed an ohmic behavior at low voltages, but significantly changed to SCLC (space-charge limited conductivity) at high voltage values.


2020 ◽  
Vol 80 (12) ◽  
Author(s):  
R. Bufalo ◽  
M. Ghasemkhani ◽  
Z. Haghgouyan ◽  
A. Soto

AbstractIn this paper, we study the one-loop induced photon’s effective action in the very special relativity electrodynamics in $$(2+1)$$ ( 2 + 1 ) spacetime ($$\hbox {VSR}$$ VSR –$$\hbox {QED}_{3}$$ QED 3 ). Due to the presence of new nonlocal couplings resulting from the VSR gauge symmetry, we have additional graphs contributing to the $$\langle AA\rangle $$ ⟨ A A ⟩ and $$\langle AAA \rangle $$ ⟨ A A A ⟩ amplitudes. From these contributions, we discuss the VSR generalization of the Abelian Maxwell–Chern–Simons Lagrangian, consisting in the dynamical part and the Chern–Simons-like self-couplings, respectively. We use the VSR–Chern–Simons electrodynamics to discuss some non-Ohmic behavior on topological materials, in particular VSR effects on Hall’s conductivity. In the dynamical part of the effective action, we observe the presence of a UV/IR mixing, due to the entanglement of the VSR nonlocal effects to the quantum higher-derivative terms. Furthermore, in the self-coupling aspect, we verify the validity of the Furry’s theorem in the $${\hbox {VSR}}$$ VSR –$$\hbox {QED}_{3}$$ QED 3 explicitly.


2020 ◽  
Vol 8 (1) ◽  
pp. 49-55
Author(s):  
Zainab J. Sweah ◽  
Fatima H. Malik

"The polymer blend of Chitosan: polyvinyl alcohol (PVA) (1:1) weight percent and hydroxyethyl cellulose (HEC) (0.5%) was prepared. The profile of the sample and its properties were measured by Fourier transfer Infrared spectroscopy (FTIR). The Scanning Electron Microscopy (FESEM) was used to describe the morphology of the polymer blend with two magnifications without any ratio of 4- (2-Pyridylazo) resorcinol monosodium salt hydrate and with 0.15 % of a 4-(2-Pyridylazo) resorcinol monosodium salt hydrate. The mechanical properties were demonstrated and characterized by Elongation and Young modulus. The polymer blend was incorporated with different weight ratios of 4-(2-Pyridylazo) of resorcinol monosodium salt hydrate, (0.03, 0.05, 0.07, 0.09, 0.15) gm of weight %. The current-voltage (I-V) characterization of prepared thin films showed ohmic behavior and the electrical conductivity was improved by increasing the ratio of dopant that leads all samples to reflect a semiconductor behavior.


2020 ◽  
Vol 21 (20) ◽  
pp. 7634
Author(s):  
Grigorii S. Bocharov ◽  
Alexander V. Eletskii

Carbon nanocomposites present a new class of nanomaterials in which conducting carbon nanoparticles are a small additive to a non-conducting matrix. A typical example of such composites is a polymer matrix doped with carbon nanotubes (CNT). Due to a high aspect ratio of CNTs, inserting rather low quantity of nanotubes (on the level of 0.01%) results in the percolation transition, which causes the enhancement in the conductivity of the material by 10–12 orders of magnitude. Another type of nanocarbon composite is a film produced as a result of reduction of graphene oxide (GO). Such a film is consisted of GO fragments whose conductivity is determined by the degree of reduction. A distinctive peculiarity of both types of nanocomposites relates to the dependence of the conductivity of those materials on the applied voltage. Such a behavior is caused by a non-ideal contact between neighboring carbon nanoparticles incorporated into the composite. The resistance of such a contact depends sharply on the electrical field strength and therefore on the distance between neighboring nanoparticles. Experiments demonstrating non-linear, non-Ohmic behavior of both above-mentioned types of carbon nanocomposites are considered in the present article. There has been a model description presented of such a behavior based on the quasi-classical approach to the problem of electron tunneling through the barrier formed by the electric field. The calculation results correspond qualitatively to the available experimental data.


2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Yan Chen ◽  
Hong Liang

Abstract We report a tribo-electrochemical configuration to conduct in situ measurement of electrical conductivity and thickness of lubricating oils against friction. Results showed the non-ohmic behavior of a lubricating film in the hydrodynamic regime. Properties of lubricants and testing conditions are factors affecting the performance. The approach reported here opens windows for future investigation in the fundamentals of lubrication and alternative design of next-generation lubricants.


Sign in / Sign up

Export Citation Format

Share Document