globin chains
Recently Published Documents


TOTAL DOCUMENTS

372
(FIVE YEARS 42)

H-INDEX

36
(FIVE YEARS 2)

Genes ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 132
Author(s):  
Mathilde Filser ◽  
Betty Gardie ◽  
Mathieu Wemeau ◽  
Patricia Aguilar-Martinez ◽  
Muriel Giansily-Blaizot ◽  
...  

High oxygen affinity hemoglobin (HOAH) is the main cause of constitutional erythrocytosis. Mutations in the genes coding the alpha and beta globin chains (HBA1, HBA2 and HBB) strengthen the binding of oxygen to hemoglobin (Hb), bringing about tissue hypoxia and a secondary erythrocytosis. The diagnosis of HOAH is based upon the identification of a mutation in HBA1, HBA2 or HBB in specialized laboratories. Phenotypic studies of Hb are also useful, but electrophoretic analysis can be normal in 1/3 of cases. The establishment of the dissociation curve of Hb can be used as another screening test, a shift to the left indicating an increased affinity for Hb. The direct measurement of venous P50 using a Hemox Analyzer is of great importance, but due to specific analytic conditions, it is only available in a few specialized laboratories. Alternatively, an estimated measurement of the P50 can be obtained in most of the blood gas analyzers on venous blood. The aim of our study was therefore to determine whether a normal venous P50 value could rule out HOAH. We sequenced the HBB, HBA1 and HBA2 genes of 75 patients with idiopathic erythrocytosis. Patients had previously undergone an exhaustive medical check-up after which the venous P50 value was defined as normal. Surprisingly, sequencing detected HOAH in three patients (Hb Olympia in two patients, and Hb St Nazaire in another). A careful retrospective examination of their medical files revealed that (i) one of the P50 samples was arterial; (ii) there was some air in another sample; and (iii) the P50 measurement was not actually done in one of the patients. Our study shows that in real life conditions, due to pre-analytical contingencies, a venous P50 value that is classified as being normal may not be sufficient to rule out a diagnosis of HOAH. Therefore, we recommend the systematic sequencing of the HBB, HBA1 and HBA2 genes in the exploration of idiopathic erythrocytosis.


2021 ◽  
Vol 4 (IAHSC) ◽  
pp. 19-24
Author(s):  
Dewi Rejeki ◽  
Yuli Utami ◽  
Sari Narulita

Introduction: Thalassemia is one of the genetic disorders characterized by the decrease or absence of one of the globin chains, either alpha chain or beta chain. Which are the main components of normal hemoglobin. Thalassemia has become serious health issue in Mediterranean, Middle East, India, and South East Asia, including Indonesia. The thalassemia gene frequency in Indonesian population ranging from 3-8%. Adolescent is the transition period from children to adult. Thalassemia adolescents express psychosocial reaction and unpleasant experience due to the lifetime treatment routines that they must face off. These impact on the adolescents’ family and self-esteem. This study aims to analyze the relationship between family support and self-esteem of thalassemia adolescents. Method: This was a quantitative study design with phenomenology approach. A total of 50 subjects were collected with purposive sampling technique. Data were obtained by from questionnaire and analyzed using Spearman Rho method with cross sectional approach. Results: The statistical result with Spearman Rho method shows significant p value of 0.024 (p <0.05) and r value of 0.319. The positive correlation implies that both variables are moving in same direction with weak relationship. These results are in accordance with the hypothesis that family support are related with self-esteem of thalassemia adolescents. Conclusion: Family support in thalassemia adolescents is high and no thalassemia adolescents present with low self-esteem, mostly normal. The correlation between these two variables is weak but significant.


Author(s):  
Ekta Padmane ◽  
Shalini Patiye ◽  
Aditya Patel ◽  
Prerna Pawar ◽  
Archana Lohave (Taksande)

Background of Study: Thalassemia is a genetic condition in which the production of globin chains is reduced or non-existent. Beta-thalassemia is caused by mutations in the beta-globin gene, which impede the formation of beta-globin chains. Based on clinical severity, beta thalassemia is categorised as follows. The most severe form of beta thalassemia is characterised by severe anaemia and the requirement for blood transfusions. Anaemia caused by beta thalassemia intermedia can be treated with medication or transfusions. Beta thalassemia minima- Also known as beta thalassemia trait, this type is typically asymptomatic. Children with beta-thalassemia major require regular blood transfusions, which can result in issues such as iron overload and the transfer of illnesses such as HIV, HCV, and HBsAg, all of which can shorten their life. Inadequate transfusions, on the other hand, result in severe anaemia as well as fatigue and debility. Objectives: To measure parents' existing knowledge of thalassemia children's home care management. To analyses the efficiency of a self-instructional module on thalassemia children's home care management expertise. To link the post-test knowledge score to the demographic factors chosen. Materials and Methods: A descriptive research design study was conducted to evaluate the efficiency of a self-instructional module on parental understanding of thalassemia children's home care management. The total number of samples in this study was 30. All of them were parents of thalassemia children from A.V.B.R. Hospital in Sawangi (Meghe), Wardha. The study employed a non-probability convenient sampling strategy, with the instrument being designed questionnaires on parental understanding of their children's medical conditions and knowledge of home care management of thalassemia. Based on the aims and hypothesis, the data was statistically analysed using various tests such as descriptive statistics and inferential statistics. Results: The purpose of this study was to determine the efficiency of a self-instructional module on parental understanding of thalassemia children's home care management. Following the installation of the seif-instructional module, 63.33 percent of Thalassemia parents had a poor level of knowledge and 36.67 percent had an average level of knowledge prior to the exam, according to analysis. The lowest knowledge score on the pre-test was 2 and the highest knowledge score was 7. The pre-test mean percentage of knowledge score was 33.559.17, and the pre-test mean knowledge score was 5.031.37. Post-test knowledge scores were average for 23.33 percent of Thalassemia parents and excellent for 76.67 percent of Thalassemia parents. The minimum post-test knowledge score was 8 and the maximum post-test knowledge score was 14. The mean post-test knowledge score was 11.901.84, and the mean percentage of knowledge score was 79.3312.29. Conclusion: The current study's pre-test results reveal that parents of thalassemia children had insufficient information about thalassemia home care management. Following the self-instructional module, it was a modest attempt to develop understanding of thalassemia home care management. Based on their pre-test scores, 19% of subjects had low knowledge, 11% had moderate knowledge, and 0% had strong knowledge, according to the findings. However, according to post-test results, 0% of subjects had low knowledge, 7% of subjects had average knowledge, and 23% of subjects had strong knowledge. As a result, the post-test knowledge score was statistically interpreted to be greater than the pre-test knowledge score.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2935-2935
Author(s):  
Mohsin Badat ◽  
Peng Hua ◽  
Sachith Mettananda ◽  
Christopher Fisher ◽  
Noemi Roy ◽  
...  

Abstract HbE/β-thalassemia is the commonest form of severe β-thalassemia, and comprises approximately 50% of all cases worldwide. HbE/β-thalassemia is caused by the HbE codon 26 G&gt;A mutation on one allele and any severe β 0-thalassemia mutation on the other. These mutations lead to a reduction in β-globin production, resulting in a relative excess in α-globin chains that go on to cause ineffective erythropoiesis. Importantly, individuals with a mutation on one, but not two, alleles have β-thalassemia trait, a carrier state with a normal phenotype. Recent gene therapy and gene editing approaches have been developed to treat β-thalassemia but do not directly repair the causative mutation in-situ. Gene replacement approaches rely on lentiviral vector-based sequence insertion or homology directed repair (HDR). HbF induction strategies also rely on non-homologous end joining (NHEJ) targeting of enhancers in-trans. These approaches, whilst variably successful, are associated with potential safety concerns. Adenine base editors (ABEs) potentially circumvent these problems by directly repairing pathogenic variants in-situ through deamination. ABEs catalyse A-T to G-C conversions through targeting with a Cas9-nickase and single-guide RNA (sgRNA). Conversion of the HbE codon to normal through base editing is an attractive strategy to recapitulate the phenotypically normal β-thalassemia trait state without potentially harmful double-strand breaks or random vector insertions (Figure 1A). ABEs are able to convert the HbE codon (AAG, lys) to wild-type (GAG, glu), but also to GGG (gly) or AGG (arg). GGG at codon 26 is found in a naturally occurring hemoglobin, Hb Aubenas. Heterozygotes have normal red cell indices and are phenotypically normal. We electroporated the latest generation of ABE8 editors (ABE8e, ABE8.13 and ABE8 V106W) as mRNA into WT CD34+ hematopoietic stem and progenitor cells (HSPCs) with sgRNAs targeting the middle A of the WT GAG codon. These had similar editing efficiencies although ABE8 V106W had marginally higher on-target efficiency. V106W has been evolved to have a favourable off-target profile. V106W mRNA/sgRNA was electroporated into 3 different severe HbE/β-thalassemia donor HSPCs. The HbE codon was converted to WT with a mean 28.7% efficiency, to Hb Aubenas 48.6% and to an undescribed AGG codon 2.1%. The mean conversion from HbE to a normal or normal variant was 78.7±8.7% (Figure 1B). The indel rate from inadvertent on-target Cas9 cleavage was below 0.5%. Edited cells did not show any perturbations in erythroid differentiation as assessed by Immunophenotyping and cellular morphology. In differentiated erythroid cells, RT-qPCR showed a mean fall in the α/β mRNA ratio to 0.65±0.08 (unedited patient cells normalised to 1, n=5, Figure 1C), indicating a reduction in the relative excess α-globin gene expression. Protein analysis by CE-HPLC showed a 3.6-fold reduction in HbE levels (SD±1.3) and a 13.5-fold increase in HbA/Hb Aubenas (SD±2.4, Figure 1C and D). To prove that base editing using mRNA was possible in long-term HSCs, CD34+ cells from 4 WT cord blood donors were edited using ABEmax. Mice were culled after 16 weeks, and human cells were collected and transplanted into 7 secondary mice, which were also culled after 16 weeks. Each secondary mouse showed the presence of hCD45+ cells, indicating engraftment of LT-HSCs. All secondary replicates showed editing, with a mean editing efficiency of 34.5% (initial editing 46.3%). In both rounds of mice, there was robust lymphoid and myeloid engraftment and expected levels of erythroid engraftment for the NSG model in bone marrow and spleen. Potential off-target effects were assessed in-vitro by CIRCLE-seq in triplicate. These sites were assessed by targeted oligonucleotide capture of DNA from mRNA edited patient cells to detect in-vivo editing. Together these data provide robust evidence for base editing as an effective and safe therapeutic strategy for HbE/β-thalassemia. Figure 1 Figure 1. Disclosures No relevant conflicts of interest to declare.


Blood ◽  
2021 ◽  
Vol 138 (Supplement 1) ◽  
pp. 2012-2012
Author(s):  
Maxwell Chappell ◽  
Danuta Jadwiga Jarocha ◽  
Laura Breda ◽  
Valentina Ghiaccio ◽  
Michael Triebwasser ◽  
...  

Abstract Alpha thalassemia (α-thal) is caused by insufficient production of the α-globin protein because of either deletional or non-deletional inactivation of endogenous α-globin genes. Clinical presentation of deletional α-thal varies from an asymptomatic condition (one inactivated α-globin gene) to a complete knockout (Hb Bart's Hydrops Fetalis). In patients with severe α-thal, a blood transfusion independent state is achievable through allogeneic bone marrow transplantation. The aims of this study are to develop a novel adult mouse model of α-thal and a gene therapy approach for this disease. We generated adult animals that do not produce α-globin chains (α-KO) through transplantation of homozygous B6.129S7-Hbatm1Paz/J fetal liver cells (FLC; isolated at E14.5) into WT recipient mice. These animals demonstrate a worsening phenotype, paradoxically showing elevated hematocrit, high reticulocyte count and a high number of red blood cells (RBC) which expressed only β-globin chains (HbH). RBC show aberrant morphology and aggregation of α- globin tetramers on RBC membranes. Due to severe inability of these RBC to deliver oxygen, the mice eventually succumb to anemia, showing splenomegaly and other organ pathologies, including vaso-occlusive events. These animals show iron deposition in the liver and kidney, in agreement with very low levels of hepcidin expression in the liver, and elevated erythropoietin (EPO) in the kidney. Interestingly, α-KO embryos show lower numbers of FLC compared to WT embryos, lower frequency of engraftable hematopoietic stem cells (HSC; Lin-Sca-1+c-kit+CD48-), decreased clonogenic potential (fewer class 4 CFUs) and elevated erythroferrone. Lethally irradiated mice transplanted with FLC-KO require 5-6x as many cells as those transplanted with FLC-WT for recovery, further suggesting some level of engraftment impairment. Our current hypothesis is that excessive hypoxia in the embryos impairs HSC function and stem cell fitness. Additional assays are in progress to assess the nature of this impairment. To generate a gene therapy tool to rescue these animals and eventually cure severe human α-thal patients, we screened multiple lentiviral vectors to identify the variant capable of producing the highest human α-globin protein per copy. The selection was conducted in murine erythroleukemia cells and human umbilical cord derived erythroid progenitor (HUDEP) cells, modified by knocking out all the human α-globin genes. We identified ALS20α, a vector where α-globin is under control of the β-globin promoter and its locus control region, as the most efficient vector. One copy of ALS20α produces exogenous α-globin at a level comparable to that produced by one endogenous α-globin gene. These results suggest that a relatively low VCN could result in dramatic therapeutic benefits. Transplantation of ALS20α transduced murine BM-KO results in correction of the disease phenotype in a dose-dependent manner. At VCN&lt;1 we observe a delay in death proportional to the VCN value, while at VCN&gt;1 we observe phenotypic normalization, including Hb, hepcidin and EPO levels. We tested ALS20α in CD34 cells isolated from four patients with both deletional and non- deletional HbH disease. We measured the change of β/α-globin mRNA ratio (β/αR) and protein level by HPLC in erythroblasts derived from these cultures. For the specimen with mutational HbH, the initial β/αR matches that of healthy controls, as the mutations do not eliminate the ability for the gene to produce aberrant mRNA transcripts, and decreased with increasing VCN. Erythroblasts with deletional HbH have a β/αR approximately 3x higher than normal cells, decreasing in a dose dependent manner with increasing VCN. HPLC detection of HbH (β4), a hallmark of HbH disease, is observed in hemolysis products from all non-transduced α−thal erythroblasts. A ~50% reduction of HbH is detected in the very same specimens upon integration of ALS20α (VCN between 1 and 2). In conclusion, we generated an adult mouse model of lethal α-thal and, in preliminary experiments, we rescue it with ALS20α. Furthermore, ALS20α successfully improves α-globin levels in patient cells. Further experiments are in progress to establish the consistency of our vector's expression in vivo, as well as to demonstrate its ability to transduce bona fide long-term HSCs. Disclosures Kattamis: Agios Pharmaceuticals: Consultancy; IONIS: Consultancy; VIFOR: Consultancy; CRISPR/Vertex: Consultancy, Honoraria; BMS/Celgene: Consultancy, Honoraria, Research Funding; Chiesi: Honoraria; Novartis: Consultancy, Honoraria, Research Funding; Amgen: Consultancy. Rivella: Celgene Corporation: Consultancy; Keros Therapeutics: Consultancy, Membership on an entity's Board of Directors or advisory committees; Disc Medicine: Consultancy, Membership on an entity's Board of Directors or advisory committees; MeiraGTx: Consultancy, Membership on an entity's Board of Directors or advisory committees; Forma Theraputics: Consultancy; Incyte: Consultancy; Ionis Pharmaceuticals: Consultancy, Membership on an entity's Board of Directors or advisory committees.


2021 ◽  
Vol 20 (3) ◽  
pp. 102-107
Author(s):  
M. V. Krasilnikova ◽  
N. A. Karamyan ◽  
E. A. Litvin ◽  
S. G. Mann

Hb Lepore, as the result of fusion of the b- and d-globin genes, leads to decreased amount of non-a-globin chains availability for hemoglobin formation. Hb Lepore, up to now, was not identified among Russian patients. We provide clinical and laboratory information on Hb Lepore Boston–Washington in two cases, one of them familial. A small amount of abnormal Hb was detected by capillary electrophoresis, an abnormal globin chain was shown by HPLC, and the final diagnosis of Hb Lepore Boston– Washington was made by molecular biological analysis of globin genes. Peripheral blood for all affected people revealed RBC’s hypochromia microcytosis and normal Hb concentration. The parents of the patients agreed to use the information, including photos of children, in scientific research and publications.


2021 ◽  
Vol 12 ◽  
Author(s):  
Parin Rattananon ◽  
Usanarat Anurathapan ◽  
Kanit Bhukhai ◽  
Suradej Hongeng

β-thalassemia, a disease that results from defects in β-globin synthesis, leads to an imbalance of β- and α-globin chains and an excess of α chains. Defective erythroid maturation, ineffective erythropoiesis, and shortened red blood cell survival are commonly observed in most β-thalassemia patients. In severe cases, blood transfusion is considered as a mainstay therapy; however, regular blood transfusions result in chronic iron overload with life-threatening complications, e.g., endocrine dysfunction, cardiomyopathy, liver disease, and ultimately premature death. Therefore, transplantation of healthy hematopoietic stem cells (HSCs) is considered an alternative treatment. Patients with a compatible human leukocyte antigen (HLA) matched donor can be cured by allogeneic HSC transplantation. However, some recipients faced a high risk of morbidity/mortality due to graft versus host disease or graft failure, while a majority of patients do not have such HLA match-related donors. Currently, the infusion of autologous HSCs modified with a lentiviral vector expressing the β-globin gene into the erythroid progenitors of the patient is a promising approach to completely cure β-thalassemia. Here, we discuss a history of β-thalassemia treatments and limitations, in particular the development of β-globin lentiviral vectors, with emphasis on clinical applications and future perspectives in a new era of medicine.


2021 ◽  
Vol 3 ◽  
Author(s):  
Sachith Mettananda

β-Thalassaemia is caused by over 300 mutations in and around the β-globin gene that lead to impaired synthesis of β-globin. The expression of α-globin continues normally, resulting in an excess of α-globin chains within red blood cells and their precursors. These unpaired α-globin chains form unstable α-hemichromes that trigger cascades of events to generate reactive oxygen species, leading to ineffective erythropoiesis and haemolysis in patients with β-thalassaemia. The clinical genetic data reported over several decades have demonstrated how the coinheritance of α-thalassaemia ameliorates the disease phenotype of β-thalassaemia. Thus, it is evident that down-regulation of the α-globin gene expression in patients with β-thalassaemia could ameliorate or even cure β-thalassaemia. Over the last few years, significant progress has been made in utilising this pathway to devise a cure for β-thalassaemia. Most research has been done to alter the epigenetic landscape of the α-globin locus or the well-characterised distant enhancers of α-globin. In vitro, pre-clinical studies on primary human erythroid cells have unveiled inhibition of histone lysine demethylation and histone deacetylation as potential targets to achieve selective downregulation of α-globin through epigenetic drug targeting. CRISPR based genome editing has been successfully used in vitro to mutate α-globin genes or enhancers of α-goblin to achieve clinically significant knockdowns of α-globin to the levels beneficial for patients with β-thalassaemia. This review summarises the current knowledge on the regulation of human α-globin genes and the clinical genetic data supporting the pathway of targeting α-globin as a treatment for β-thalassaemia. It also presents the progress of epigenetic drug and genome editing approaches currently in development to treat β-thalassaemia.


Author(s):  
Karin Kettisen ◽  
Leif Bülow

Fetal hemoglobin (HbF) has been developed into an important alternative protein for oxygen therapeutics. Such applications require extensive amounts of proteins, which only can be achieved via recombinant means. However, the expression of vertebrate hemoglobins in heterologous hosts is far from trivial. There are several issues that need to be dealt with. These include, among others, the solubility of the globin chains, equimolar expression of the globin chains, and access to high levels of free heme. In this study, we examined the impact of introducing negative charges on the surface of HbF. Three different HbF mutants were examined, carrying four additional negative charges on the α-subunit (rHbFα4), two additional negative charges on the γ-subunit (rHbFγ2) or a combination of these (rHbFα4/γ2). The increase in negative surface charge in these HbF mutants required the development of an alternate initial capture step in the downstream purification procedures. For the rHbFα4 mutant, we achieved a significantly enhanced yield of purified HbF with no apparent adverse effects on Hb functionality. However, the presence of non-functional Hb portions in the rHbFγ2 and rHbFα4/γ2 samples reduced the yields significantly for those mutants and indicated an imbalanced expression/association of globin chains. Furthermore, the autoxidation studies indicated that the rHbFγ2 and rHbFα4/γ2 mutants also were less oxidatively stable than rHbFα4 and wt rHbF. The study further verified the need for an improved flask culture protocol by optimizing cultivation parameters to enable yield-improving qualities of surface-located mutations.


2021 ◽  
Author(s):  
Dipayan Bose ◽  
Shantanu Aggarwal ◽  
Debashree Das ◽  
Chandrabhas Narayana ◽  
Abhijit Chakrabarti

Hemoglobin oxidation due to oxidative stress and disease conditions leads to generation of ROS (reactive oxygen species) and membrane attachment of hemoglobin in-vivo, where its redox activity leads to peroxidative damage of membrane lipids and proteins. Spectrin, the major component of the RBC membrane skeleton, is known to interact with hemoglobin and, here this interaction is shown to increase hemoglobin peroxidase activity in the presence of reducing substrate ABTS (2, 2-Azino-Bis-3-Ethylbenzothiazoline-6-Sulfonic Acid). It is also shown that in the absence of reducing substrate, spectrin forms covalently cross-linked aggregates with hemoglobin which display no peroxidase activity. This may have implications in the clearance of ROS and limiting peroxidative damage. Spectrin is found to modulate the peroxidase activity of different hemoglobin variants like A, E, and S, and of isolated globin chains from each of these variants. This may be of importance in disease states like sickle cell disease and HbE-β-thalassemia, where increased oxidative damage and free globin subunits are present due to the defects inherent in the hemoglobin variants associated with these diseases. This hypothesis is corroborated by lipid peroxidation experiments. The modulatory role of spectrin is shown to extend to other heme proteins, namely catalase and cytochrome-c. Experiments with free heme and Raman spectroscopy of heme proteins in the presence of spectrin show that structural alterations occur in the heme moiety of the heme proteins on spectrin binding, which may be the structural basis of increased enzyme activity.


Sign in / Sign up

Export Citation Format

Share Document