gma welding
Recently Published Documents


TOTAL DOCUMENTS

256
(FIVE YEARS 38)

H-INDEX

22
(FIVE YEARS 2)

2022 ◽  
Author(s):  
Kővágó Csaba ◽  
Barbara Szekeres ◽  
Éva Szűcs-Somlyó ◽  
Kornél Májlinger ◽  
Ákos Jerzsele ◽  
...  

Abstract The most important welding processes used are the Gas Metal Arc (GMA) welding, the Tungsten Inert Gas (TIG) welding, and the Manual Metal Arc (MMA) welding processes. The goal of our investigation was to monitor the distribution of iron (Fe), manganese (Mn), calcium (Ca) and magnesium (Mg) in the lung, spleen, liver, and kidney of mice after inhalation exposure of different welding methods using different steel base materials. The treatment groups were the following: MMA-mild steel, MMA-molybdenum-manganese (MoMn) alloy, TIG-mild steel, and TIG-stainless steel. The samples were taken 24- and 96 hours after the treatments.Most importantly, it was found that the Mn concentration in the lung’ samples of the MMA-mild steel and the MMA-MoMn groups was increased extremely at both sampling times and in the spleen’ samples also. In the TIG groups, the rise of the Mn concentration was only considerable in the lungs and spleens at 24h, and emerged concentration was found in the liver in 96h samples. Histopathology demonstrated emerged siderin content in the spleens of the treated animals and in siderin filled macrophages in the lungs mostly in all treated groups. Traces of high-level glycogen retention was found in the MMA groups at both sampling times. Similar glycogen retention in TIG-Ms and TIG stainless group’s liver samples and emerged number of vacuoles, especially in the hepatocytes of the TIG-stainless steel 96h group were also found.The mentioned results raise the consequence that there is a considerable difference in the kinetics of the Mn distribution between the MMA- and the TIG-fume treated groups. Hence, the result suggests that manganese has a particle-size dependent toxico-kinetics property. The anomaly of the glycogen metabolism indicates the systemic effect of the welding fumes. Also, the numerous vacuoles mentioned above show a possible liver-specific adverse effect of some components of the TIG-stainless steel welding fumes.


2021 ◽  
Vol 31 (6) ◽  
pp. 349-354
Author(s):  
Cynthia S. Abima ◽  
Stephen A. Akinlabi ◽  
Nkosinathi Madushele ◽  
Esther T. Akinlabi

Parameters optimization has become a gateway to achieving quality welds with improved properties desirable for construction and industrial applications. The complex interaction of welding input parameters requires process optimization to achieve optimal responses (s). This study reports the optimization of input parameters for Gas Metal Arc Welding (GMAW) for optimal ultimate tensile strength in AISI 1008 steel joints. Three levels of arc voltage, welding current, and gas flow rate were selected as input parameters, while the targeted output response is the ultimate tensile strength. Taguchi’s method with an L-9 orthogonal matrix was adopted for the process optimization. The MINITAB 17 software was used to analyze the response through analysis of variance and signal-to-noise ratio. The result revealed that the parameter settings for optimal tensile strength for the GMA welding of 6 mm thick AISI 1008 steel joint are arc voltage set at 30 V, current at 180 A, and gas flow rate set at 17 L/mm. The analysis of variance showed that the arc voltage had the most significant influence on the ultimate tensile strength with a 39.76% contribution, followed by the gas flow rate with 31.15%, while the welding current had 6.28% contributions. The surface plots show that a lower-level voltage, higher-level welding current, and higher-level gas flow rate favoured maximum ultimate tensile strength.


Author(s):  
Marek Sebastian Simon ◽  
Oleg Mokrov ◽  
Rahul Sharma ◽  
Uwe Reisgen ◽  
Guokai Zhang ◽  
...  

Abstract A first experimental validation of the EDACC (evaporation-determined arc-cathode coupling) model is performend by comparing the experimental and simulated current in the peak current phase of a pulsed GMAW (gas metal arc welding) process. For this, the EDACC model was extended to limit the cathode surface temperature to a realistic value of <2400K. The information on the plasma for the EDACC model was gathered from literature and extrapolated and extended according to qualitative reasoning. The information on the cathode surface of the EDACC model was derived from a steady-state simulation of the weld pool, using an averaging approach over time for the energy and current. The weld pool surface temperature was compared to pyrometric measurements, that were performed for this work, and the agreement was found to be fair. The observed agreement between the modelled and experimentally determined current was within 10%. As strong assumptions were made for the comparison, the validation cannot be considered as final, but the assumptions are thoroughly analyzed and discussed. However the critical link between surface temperature, plasma temperature and total current transmitted could be reconstructed.


2021 ◽  
Vol 890 ◽  
pp. 9-16
Author(s):  
Ion Aurel Perianu ◽  
Lia Nicoleta Boțilă ◽  
Radu Cojocaru ◽  
Emilia Florina Binchiciu

Replacing worn or damaged parts implies high material costs and financial expense for public tram transportation services, especially for the imported units and that is why it is preferable to recondition them, taking into consideration the safety requirements. In this paper, ISIM initiatives and achievements are presented in the field of cost reduction and maintenance during operation of trams, by introduction in the operation process of worn parts, within the safety limits. Aspects are presented regarding the possibilities for reconditioning and repair of parts with a circular geometry (e.g. wheel bands, axles, drum brakes). Some of these are being applied and implemented. Also, innovative ideas are presented for increasing the performance of equipment used for reconditioning.


Metals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 904
Author(s):  
Thomas Schaupp ◽  
Nina Schroeder ◽  
Dirk Schroepfer ◽  
Thomas Kannengiesser

Modern arc processes, such as the modified spray arc (Mod. SA), have been developed for gas metal arc welding of high-strength structural steels with which even narrow weld seams can be welded. High-strength joints are subjected to increasingly stringent requirements in terms of welding processing and the resulting component performance. In the present work, this challenge is to be met by clarifying the influences on hydrogen-assisted cracking (HAC) in a high-strength structural steel S960QL. Adapted samples analogous to the self-restraint TEKKEN test are used and analyzed with respect to crack formation, microstructure, diffusible hydrogen concentration and residual stresses. The variation of the seam opening angle of the test seams is between 30° and 60°. To prevent HAC, the effectiveness of a dehydrogenation heat treatment (DHT) from the welding heat is investigated. As a result, the weld metals produced at reduced weld opening angle show slightly higher hydrogen concentrations on average. In addition, increased micro- as well as macro-crack formation can be observed on these weld metal samples. On all samples without DHT, cracks in the root notch occur due to HAC, which can be prevented by DHT immediately after welding.


2021 ◽  
Vol 15 (56) ◽  
pp. 84-93
Author(s):  
Saadat Ali Rizvi ◽  
Wajahat Ali

In this experimental works, the effect of GMA welding process parameters, such as arc voltage, wire feed speed, and gas flow rate on the mechanical quality of IS 2062 structural steel of grade A has been studied. Process parameters play an important role in determining the weld quality. In this research work response surface methodology (RSM) technique via design expert (DOE) 12 version software was applied to determining the weld quality and also to develop a mathematical model that can predict the main effect of the above said parameters on weld quality i.e. toughness and hardness. A set of experiments has been conducted to collect the data using a central composite design and ANOVA was used to predict the impact of welding parameters on toughness and hardness and Comparison also made between the actual result and predicted value and from the result that is clear that toughness and hardness of weldment is significantly affected by arc voltage, wire feed speed, and follow by gas flow rate.


2021 ◽  
Vol 9 (3) ◽  
pp. 299-310 ◽  
Author(s):  
Saadat Ali Rizvi ◽  
Rajnish Singh ◽  
Saurabh Kumar Gupta

The basic aim of this study was to find a relationship between heat input and mechanical properties of high strength low alloy steel (HSLA) welded joints and also elaborate its effect on microstructure. The combined effect of welding current, voltage and speed i.e. Heat Input on mechanical properties of High Strength Low Alloy Steel (ASTM A242 type-II) weldments have been studied in the present work. HSLA steel work pieces were welded by Gas metal arc welding (GMAW) process under varying welding current, arc voltage, and welding speed. Total nine samples were prepared at different heat input level i.e. 1.872 kJ/mm, 1.9333 kJ/mm, 2.0114 kJ/mm, 2.1 kJ/mm, 2.1956 kJ/mm, 2.296 kJ/mm, 2.4 kJ/mm, 2.5067 kJ/mm and 2.6154 kJ/mm It was observed that as heat input increases the ultimate tensile strength and microhardness of weldment decreased while impact strength increased and it was also observed that on increasing the heat input grain size of microstructure tends to coarsening it is only due to decreasing in cooling rate.


2021 ◽  
Vol 39 (4) ◽  
pp. 301-308
Author(s):  
Tomoaki NAKASHIMA ◽  
Yuji KISAKA ◽  
Fumiaki KIMURA ◽  
Masahiro OHARA ◽  
Shinichi TASHIRO ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document