functional homology
Recently Published Documents


TOTAL DOCUMENTS

158
(FIVE YEARS 15)

H-INDEX

38
(FIVE YEARS 1)

Author(s):  
Soledad N. Gonzalez ◽  
Valeria Sulzyk ◽  
Mariana Weigel Muñoz ◽  
Patricia S. Cuasnicu

Mammalian fertilization is a complex process involving a series of successive sperm-egg interaction steps mediated by different molecules and mechanisms. Studies carried out during the past 30 years, using a group of proteins named CRISP (Cysteine-RIch Secretory Proteins), have significantly contributed to elucidating the molecular mechanisms underlying mammalian gamete interaction. The CRISP family is composed of four members (i.e., CRISP1-4) in mammals, mainly expressed in the male tract, present in spermatozoa and exhibiting Ca2+ channel regulatory abilities. Biochemical, molecular and genetic approaches show that each CRISP protein participates in more than one stage of gamete interaction (i.e., cumulus penetration, sperm-ZP binding, ZP penetration, gamete fusion) by either ligand-receptor interactions or the regulation of several capacitation-associated events (i.e., protein tyrosine phosphorylation, acrosome reaction, hyperactivation, etc.) likely through their ability to regulate different sperm ion channels. Moreover, deletion of different numbers and combination of Crisp genes leading to the generation of single, double, triple and quadruple knockout mice showed that CRISP proteins are essential for male fertility and are involved not only in gamete interaction but also in previous and subsequent steps such as sperm transport within the female tract and early embryo development. Collectively, these observations reveal that CRISP have evolved to perform redundant as well as specialized functions and are organized in functional modules within the family that work through independent pathways and contribute distinctly to fertility success. Redundancy and compensation mechanisms within protein families are particularly important for spermatozoa which are transcriptionally and translationally inactive cells carrying numerous protein families, emphasizing the importance of generating multiple knockout models to unmask the true functional relevance of family proteins. Considering the high sequence and functional homology between rodent and human CRISP proteins, these observations will contribute to a better understanding and diagnosis of human infertility as well as the development of new contraceptive options.


2021 ◽  
Vol 118 (46) ◽  
pp. e2100575118
Author(s):  
Joaquín Letelier ◽  
Silvia Naranjo ◽  
Ismael Sospedra-Arrufat ◽  
Juan Ramón Martinez-Morales ◽  
Javier Lopez-Rios ◽  
...  

One of the central problems of vertebrate evolution is understanding the relationship among the distal portions of fins and limbs. Lacking comparable morphological markers of these regions in fish and tetrapods, these relationships have remained uncertain for the past century and a half. Here we show that Gli3 functions in controlling the proliferative expansion of distal progenitors are shared among dorsal and paired fins as well as tetrapod limbs. Mutant knockout gli3 fins in medaka (Oryzias latipes) form multiple radials and rays, in a pattern reminiscent of the polydactyly observed in Gli3-null mutant mice. In limbs, Gli3 controls both anterior–posterior patterning and cell proliferation, two processes that can be genetically uncoupled. In situ hybridization, quantification of proliferation markers, and analysis of regulatory regions reveal that in paired and dorsal fins, gli3 plays a main role in controlling proliferation but not in patterning. Moreover, gli3 down-regulation in shh mutant fins rescues fin loss in a manner similar to how Gli3 deficiency restores digits in the limbs of Shh mutant mouse embryos. We hypothesize that the Gli3/Shh gene pathway preceded the origin of paired appendages and was originally involved in modulating cell proliferation. Accordingly, the distal regions of dorsal fins, paired fins, and limbs retain a deep regulatory and functional homology that predates the origin of paired appendages.


PLoS ONE ◽  
2021 ◽  
Vol 16 (10) ◽  
pp. e0258992
Author(s):  
Haewon Nam ◽  
Chongwon Pae ◽  
Jinseok Eo ◽  
Maeng-Keun Oh ◽  
Hae-Jeong Park

Systematic evaluation of cortical differences between humans and macaques calls for inter-species registration of the cortex that matches homologous regions across species. For establishing homology across brains, structural landmarks and biological features have been used without paying sufficient attention to functional homology. The present study aimed to determine functional homology between the human and macaque cortices, defined in terms of functional network properties, by proposing an iterative functional network-based registration scheme using surface-based spherical demons. The functional connectivity matrix of resting-state functional magnetic resonance imaging (rs-fMRI) among cortical parcellations was iteratively calculated for humans and macaques. From the functional connectivity matrix, the functional network properties such as principal network components were derived to estimate a deformation field between the human and macaque cortices. The iterative registration procedure updates the parcellation map of macaques, corresponding to the human connectome project’s multimodal parcellation atlas, which was used to derive the macaque’s functional connectivity matrix. To test the plausibility of the functional network-based registration, we compared cortical registration using structural versus functional features in terms of cortical regional areal change. We also evaluated the interhemispheric asymmetry of regional area and its inter-subject variability in humans and macaques as an indirect validation of the proposed method. Higher inter-subject variability and interhemispheric asymmetry were found in functional homology than in structural homology, and the assessed asymmetry and variations were higher in humans than in macaques. The results emphasize the significance of functional network-based cortical registration across individuals within a species and across species.


PLoS ONE ◽  
2021 ◽  
Vol 16 (8) ◽  
pp. e0255847
Author(s):  
Sanober Gul ◽  
Kausar Nawaz Shah ◽  
Rashid Mehmood Rana ◽  
Muhammad Azam Khan ◽  
Ahmed M. El-Shehawi ◽  
...  

Heat shock proteins (Hsps) are stress-responsive molecular chaperones, which uphold proper protein folding in response to external and internal stresses. The Hsp100 gene family plays a substantial role in thermos-tolerance of plants. This study investigated evolutionary relationship and expression of ClpB/Hsp100 gene family in tomato under heat stress. Six SlHsp100 genes were identified using bioinformatics tools. In silico sub-cellular localization indicated that of these 6 ClpB/Hsp100 members, 4 are found in chloroplast, 1 in mitochondria and 1 in the cytoplasm. For evolutionary study, 36 SlHsp100 genes were included in the phylogenetic tree showing a hierarchical clustering shared by the members of the kingdoms Plantae, Archaea, Chromista, Fungi and Bacteria. A total 4 pairs of orthologous and 5 pairs of paralogous genes were identified. Functional divergence between different Hsp100 clusters showed considerable functional homology. Thermo-tolerance measured in terms of cell viability, cell membrane stability and pollen viability indicated that it was paralleled by thermal resistance of Hsps. Reverse transcriptase polymerase chain reaction was used to analyze gene expression in leaves of five-week-old tomato seedlings following exposure to heat stress (45°C) and control (25°C). Chloroplastic LeHSP110/ClpB gene was upregulated in all tomato genotypes after exposure to heat stress highlighting the crucial role of this gene family in acquired thermo-tolerance.


2021 ◽  
Author(s):  
Jaya Srivastava ◽  
Ritu Hembrom ◽  
Ankita Kumawat ◽  
Petety V. Balaji

UniProt and BFD databases together have 2.5 billion protein sequences. A large majority of these proteins have been electronically annotated. Automated annotation pipelines, vis-á-vis manual curation, have the advantage of scale and speed but are fraught with relatively higher error rates. This is because sequence homology does not necessarily translate to functional homology, molecular function specification is hierarchic and not all functional families have the same amount of experimental data that one can exploit for annotation. Consequently, customization of annotation workflow is inevitable to minimize annotation errors. In this study, we illustrate possible ways of customizing the search of sequence databases for functional homologs using profile HMMs. Choosing an optimal bit score threshold is a critical step in the application of HMMs. We illustrate ways in which an optimal bit score can be arrived at using four Case Studies. These are the single domain nucleotide sugar 6-dehydrogenase and lysozyme-C families, and SH3 and GT-A domains which are typically found as a part of multi-domain proteins. We also discuss the limitations of using profile HMMs for functional annotation and suggests some possible ways to partially overcome such limitations.


2021 ◽  
Vol 12 ◽  
Author(s):  
Justin Pollara ◽  
Matthew Zirui Tay ◽  
R. Whitney Edwards ◽  
Derrick Goodman ◽  
Andrew R. Crowley ◽  
...  

Analyses of human clinical HIV-1 vaccine trials and preclinical vaccine studies performed in rhesus macaque (RM) models have identified associations between non-neutralizing Fc Receptor (FcR)-dependent antibody effector functions and reduced risk of infection. Specifically, antibody-dependent phagocytosis (ADP) has emerged as a common correlate of reduced infection risk in multiple RM studies and the human HVTN505 trial. This recurrent finding suggests that antibody responses with the capability to mediate ADP are most likely a desirable component of vaccine responses aimed at protecting against HIV-1 acquisition. As use of RM models is essential for development of the next generation of candidate HIV-1 vaccines, there is a need to determine how effectively ADP activity observed in RMs translates to activity in humans. In this study we compared ADP activity of human and RM monocytes and polymorphonuclear leukocytes (PMN) to bridge this gap in knowledge. We observed considerable variability in the magnitude of monocyte and PMN ADP activity across individual humans and RM that was not dependent on FcR alleles, and only modestly impacted by cell-surface levels of FcRs. Importantly, we found that for both human and RM phagocytes, ADP activity of antibodies targeting the CD4 binding site was greatest when mediated by human IgG3, followed by RM and human IgG1. These results demonstrate that there is functional homology between antibody and FcRs from these two species for ADP. We also used novel RM IgG1 monoclonal antibodies engineered with elongated hinge regions to show that hinge elongation augments RM ADP activity. The RM IgGs with engineered hinge regions can achieve ADP activity comparable to that observed with human IgG3. These novel modified antibodies will have utility in passive immunization studies aimed at defining the role of IgG3 and ADP in protection from virus challenge or control of disease in RM models. Our results contribute to a better translation of human and macaque antibody and FcR biology, and may help to improve testing accuracy and evaluations of future active and passive prevention strategies.


2021 ◽  
Vol 12 ◽  
Author(s):  
Saul Lema A ◽  
Marina Klemenčič ◽  
Franziska Völlmy ◽  
Maarten Altelaar ◽  
Christiane Funk

Caspases are proteases, best known for their involvement in the execution of apoptosis—a subtype of programmed cell death, which occurs only in animals. These proteases are composed of two structural building blocks: a proteolytically active p20 domain and a regulatory p10 domain. Although structural homologs appear in representatives of all other organisms, their functional homology, i.e., cell death depending on their proteolytical activity, is still much disputed. Additionally, pseudo-caspases and pseudo-metacaspases, in which the catalytic histidine-cysteine dyad is substituted with non-proteolytic amino acid residues, were shown to be involved in cell death programs. Here, we present the involvement of a pseudo-orthocaspase (SyOC), a prokaryotic caspase-homolog lacking the p10 domain, in oxidative stress in the model cyanobacterium Synechocystis sp. PCC 6803. To study the in vivo impact of this pseudo-protease during oxidative stress its gene expression during exposure to H2O2 was monitored by RT-qPCR. Furthermore, a knock-out mutant lacking the pseudo-orthocaspase gene was designed, and its survival and growth rates were compared to wild type cells as well as its proteome. Deletion of SyOC led to cells with a higher tolerance toward oxidative stress, suggesting that this protein may be involved in a pro-death pathway.


2021 ◽  
Author(s):  
Valentina Poltavets ◽  
Zahra Esmaeili ◽  
Sarah T. Boyle ◽  
Hayley S. Ramshaw ◽  
Angel F. Lopez ◽  
...  

AbstractThe 14-3-3 family of proteins have roles in regulating several key cellular processes. While their significant structural and functional homology had informed the idea that these proteins acted redundantly, it is now becoming clear that individual family members may have tissue and context specific functions, highlighting the need for a more nuanced understanding of these important proteins. Here, we demonstrate that mice deficient in 14-3-3ζ exhibit developmental defects of the mammary epithelium, associated with dysregulation of key transcription factors involved in the maintenance of mammary stem cell populations. We believe that this model will be prove useful for investigating the role of 14-3-3ζ in the maintenance of mammary stem cell populations and elucidating the transcriptional networks driving specification of the mammary epithelium.


2021 ◽  
Vol 25 (01) ◽  
pp. 123-130
Author(s):  
Mahnoor Imran

WRINKLED1 belongs to AP2/EREB family of transcription factors whose role has been well established in seed oil biosynthesis. The objective of the study was to trace the role of fiber related Gbwri1 in seed development and fatty acid biosynthesis. In this study, we isolated a transcript from elite fiber producing cotton (Gossypium barbadense), which is over-expressed in G. barbadense fibers as compared to G. hirsutum and G. arboreum. The putative protein encoded by this transcript exhibited homology in specific domains and protein structure with WRINKLED1 of Arabidopsis thaliana and was thus designated as Gbwri1. In this study, we investigated the functional homology of fiber elongation related Gbwri1 with fatty acid biosynthesis regulator Atwri1. Ectopic expression of Gbwri1 in wri1-3 mutant of A. thaliana was analyzed. In the transgenic lines of A. thaliana, Gbwri1 resumed the seed weight, seed area, and surface morphology to the wild type. Gbwri1 transformation rescued the wrinkled phenotype of wri1-3 mutants by resuming the expression of fatty acid biosynthesis genes biotin carboxyl carrier protein isoform 2 (bccp2) and keto-ACP synthase 1 (kas1). Moreover, the seedling development of transgenic lines on non-sucrose medium demonstrated that the Gbwri1 was able to regulate the supply of sucrose for normal seedling establishment. Our results showed that the transformation of Gbwri1 in A. thaliana wri1-3 mutant was able to complement wri1-3 impaired phenotype. Thus, Gbwri1 is involved in cotton fiber development and fatty acid biosynthesis in seeds. © 2021 Friends Science Publishers


2020 ◽  
Author(s):  
Joaquín Letelier ◽  
Silvia Naranjo ◽  
Ismael Sospedra ◽  
Javier Lopez-Rios ◽  
Juan Ramón Martinez-Morales ◽  
...  

One of the central problems of vertebrate evolution is understanding the relationship among the distal portions of fins and limbs. Lacking comparable morphological markers of these regions in fish and tetrapods, these relationships have remained uncertain for the past century and a half. Here we show that Gli3 functions in controlling the proliferative expansion of distal progenitors are shared among median and paired fins as well as tetrapod limbs. Mutant knockout gli3 fins in medaka (Oryzias latipes) form multiple radials and rays, in a pattern reminiscent of the polydactyly observed in Gli3 null mutant mice. In limbs, Gli3 controls both anterior-posterior patterning and cell proliferation, two processes that can be genetically uncoupled. In situ hybridization, quantification of proliferation markers, and analysis of regulatory regions reveal that in paired and median fins, gli3 plays a main role in controlling proliferation but not in patterning. Moreover, gli3 downregulation in shh mutant fins rescues fin loss in a manner similar to how Gli3-deficiency restores digits in the limbs of Shh mutant mouse embryos. We hypothesize that the Gli3/Shh pathway preceded the origin of paired appendages and was originally involved in modulating cell proliferation. Accordingly, the distal regions of median fins, paired fins, and limbs retain a deep regulatory and functional homology that predates the origin of paired appendages.


Sign in / Sign up

Export Citation Format

Share Document