directional diffusion
Recently Published Documents


TOTAL DOCUMENTS

85
(FIVE YEARS 20)

H-INDEX

15
(FIVE YEARS 3)

Author(s):  
Jiaqi Miao ◽  
Tieshan Zhang ◽  
Gen Li ◽  
Wanfeng Shang ◽  
Yajing Shen

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Rafat Damseh ◽  
Yuankang Lu ◽  
Xuecong Lu ◽  
Cong Zhang ◽  
Paul J. Marchand ◽  
...  

AbstractRecent studies suggested that cerebrovascular micro-occlusions, i.e. microstokes, could lead to ischemic tissue infarctions and cognitive deficits. Due to their small size, identifying measurable biomarkers of these microvascular lesions remains a major challenge. This work aims to simulate potential MRI signatures combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). Driving our hypothesis are recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially-oriented, and optical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n = 5) before and after inducing targeted photothrombosis, were analyzed. Computational vascular graphs combined with a 3D Monte-Carlo simulator were used to characterize the magnetic resonance (MR) response, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. We quantified the minimal intravoxel signal loss ratio when applying multiple gradient directions, at varying sequence parameters with and without ASL. With ASL, our results demonstrate a significant difference (p < 0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p < 0.005) using angiograms measured at week 4. Without ASL, no reliable signal change was found. We found that higher ratios, and accordingly improved significance, were achieved at lower magnetic field strengths (e.g., B0 = 3T) and shorter echo time TE (< 16 ms). Our simulations suggest that microstrokes might be characterized through ASL-DWI sequence, providing necessary insights for posterior experimental validations, and ultimately, future translational trials.


Diagnostics ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 563
Author(s):  
Chen Shenhar ◽  
Hadassa Degani ◽  
Yaara Ber ◽  
Jack Baniel ◽  
Shlomit Tamir ◽  
...  

In the prostate, water diffusion is faster when moving parallel to duct and gland walls than when moving perpendicular to them, but these data are not currently utilized in multiparametric magnetic resonance imaging (mpMRI) for prostate cancer (PCa) detection. Diffusion tensor imaging (DTI) can quantify the directional diffusion of water in tissue and is applied in brain and breast imaging. Our aim was to determine whether DTI may improve PCa detection. We scanned patients undergoing mpMRI for suspected PCa with a DTI sequence. We calculated diffusion metrics from DTI and diffusion weighted imaging (DWI) for suspected lesions and normal-appearing prostate tissue, using specialized software for DTI analysis, and compared predictive values for PCa in targeted biopsies, performed when clinically indicated. DTI scans were performed on 78 patients, 42 underwent biopsy and 16 were diagnosed with PCa. The median age was 62 (IQR 54.4–68.4), and PSA 4.8 (IQR 1.3–10.7) ng/mL. DTI metrics distinguished PCa lesions from normal tissue. The prime diffusion coefficient (λ1) was lower in both peripheral-zone (p < 0.0001) and central-gland (p < 0.0001) cancers, compared to normal tissue. DTI had higher negative and positive predictive values than mpMRI to predict PCa (positive predictive value (PPV) 77.8% (58.6–97.0%), negative predictive value (NPV) 91.7% (80.6–100%) vs. PPV 46.7% (28.8–64.5%), NPV 83.3% (62.3–100%)). We conclude from this pilot study that DTI combined with T2-weighted imaging may have the potential to improve PCa detection without requiring contrast injection.


2021 ◽  
Author(s):  
Junhua Xu ◽  
Liang Liu ◽  
Juan Yu ◽  
Yujun Zou ◽  
Wenhui Pei ◽  
...  

Abstract Here introduced a route for the synthesis of 3D structures that display a mechanical strength that competes with that of the toughest materials found in nature. Following the “brick-and-mortar” biomineralization typical of nacre, self-stratified, periodic materials are obtained by one-step ion diffusion gradient and hydrogelation of nanochitin with simultaneous mineral coprecipitation. Specifically, under appropriate electrolyte conditions, hydroxyapatite (HA) microspheres grow in an organic network formed from partially deacetylated chitin nanofibers (NCh), resulting in periodic stacking of mineralized (HA) and non-mineralized (NCh) layers. By directional diffusion, customizable 3D shapes are self-assembled and demonstrated to function as optical waveguides with selective light transmission at interfaces. Upon hot pressing, the resulting solid structures exhibit a superb mechanical performance while being biocompatible (tested with chondrogenic ATDC5 cells as a model for physiological mineralization). Overall, a shape-controlled, one-pot biomineralization method was proposed that achieves hierarchical, periodic and strong “nacre-like” structures suitable as biomedical material.


2021 ◽  
Vol 3 (3) ◽  
pp. 1-16
Author(s):  
Antonio Vitolo ◽  
◽  
◽  
◽  
◽  
...  

Acta Acustica ◽  
2020 ◽  
Vol 5 ◽  
pp. 1
Author(s):  
Florian Wendt ◽  
Robert Höldrich

Studies on the precedence effect are typically conducted by presenting two identical sounds simulating direct sound and specular reflection. However, when a sound is reflected from irregular surface, it is redirect into many directions resulting in directional and temporal diffusion. This contribution introduces a simulation of Lambertian diffusing reflections. The perceptual influences of diffusion are studied in a listening experiment; echo thresholds and masked thresholds of specular and diffuse reflections are measured. Results show that diffusion makes the reflections more easily detectable than specular reflections of the same total energy. Indications are found that this mainly due to temporal diffusion, while the directional diffusion has little effect. Accordingly, the modeling of the echo thresholds is achieved by a temporal alignment of the experimental data based on the energy centroid of reflection responses. For the modeling of masked threshold the temporal masking pattern for forward masking is taken into account.


2020 ◽  
Author(s):  
Rafat Damseh ◽  
Yuankang Lu ◽  
Xuecong Lu ◽  
Cong Zhang ◽  
Paul J. Marchand ◽  
...  

ABSTRACTRecent studies suggested that cerebrovascular micro-occlusions, i.e. microstokes, could lead to ischemic tissue infarctions and cognitive deficits. Due to their small size, identifying measurable biomarkers of these microvascular lesions remains a major challenge. This work aims to simulate potential MRI signatures combining arterial spin labeling (ASL) and multi-directional diffusion-weighted imaging (DWI). Driving our hypothesis are recent observations demonstrating a radial reorientation of microvasculature around the micro-infarction locus during recovery in mice. Synthetic capillary beds, randomly- and radially-oriented, and optical coherence tomography (OCT) angiograms, acquired in the barrel cortex of mice (n=5) before and after inducing targeted photothrombosis, were analyzed. Computational vascular graphs combined with a 3D Monte-Carlo simulator were used to characterize the magnetic resonance (MR) response, encompassing the effects of magnetic field perturbations caused by deoxyhemoglobin, and the advection and diffusion of the nuclear spins. We quantified the minimal intravoxel signal loss ratio when applying multiple gradient directions, at varying sequence parameters with and without ASL. With ASL, our results demonstrate a significant difference (p<0.05) between the signal-ratios computed at baseline and 3 weeks after photothrombosis. The statistical power further increased (p<0.005) using angiograms measured at week 4. Without ASL, no reliable signal change was found. We found that higher ratios, and accordingly improved significance, were achieved at lower magnetic field strengths (e.g., B0=3) and shorter readout TE (<16 ms). Our simulations suggest that microstrokes might be characterized through ASL-DWI sequence, providing necessary insights for posterior experimental validations, and ultimately, future translational trials.


2020 ◽  
Vol 29 (7) ◽  
pp. 1693-1701
Author(s):  
Masaki Norimoto ◽  
Yawara Eguchi ◽  
Atsuya Watanabe ◽  
Takayuki Sakai ◽  
Daichi Murayama ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document