finite thrust
Recently Published Documents


TOTAL DOCUMENTS

50
(FIVE YEARS 9)

H-INDEX

10
(FIVE YEARS 1)

2022 ◽  
pp. 1-15
Author(s):  
Ping Lu ◽  
Alexander Lewis ◽  
Richard J. Adams ◽  
Michael D. DeVore ◽  
Christopher D. Petersen

Author(s):  
Mauro Pontani

AbstractThe detection of optimal trajectories with multiple coast arcs represents a significant and challenging problem of practical relevance in space mission analysis. Two such types of optimal paths are analyzed in this study: (a) minimum-time low-thrust trajectories with eclipse intervals and (b) minimum-fuel finite-thrust paths. Modified equinoctial elements are used to describe the orbit dynamics. Problem (a) is formulated as a multiple-arc optimization problem, and additional, specific multipoint necessary conditions for optimality are derived. These yield the jump conditions for the costate variables at the transitions from light to shadow (and vice versa). A sequential solution methodology capable of enforcing all the multipoint conditions is proposed and successfully applied in an illustrative numerical example. Unlike several preceding researches, no regularization or averaging is required to make tractable and solve the problem. Moreover, this work revisits problem (b), formulated as a single-arc optimization problem, while emphasizing the substantial analytical differences between minimum-fuel paths and problem (a). This study also proves the existence and provides the derivation of the closed-form expressions for the costate variables (associated with equinoctial elements) along optimal coast arcs.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Donghun Lee ◽  
Young-Joo Song

This paper considers a planar orbit transfer trajectory design problem using finite thrust modeling. In this problem, the steering angles associated with the thrust direction are calculated from the predetermined profile format, and the unknown parameters in the profile are directly optimized. Three profile formats that were implemented in previous lunar exploration missions are considered. In addition, a steering angle profile defined in the rotating frame and the optimal steering angle profile are newly studied to compare the performances. To this end, the direct parameter optimization problem and the indirect optimization problem are formulated, and the characteristics of the steering angle profile and its influence on the transfer trajectory are analyzed.


Author(s):  
Viacheslav Petukhov ◽  
Alexey Ivanyukhin ◽  
Garri Popov ◽  
Nikolay Testoyedov ◽  
Sung Wook Yoon

2019 ◽  
Vol 67 (2) ◽  
pp. 257-334 ◽  
Author(s):  
Ehsan Taheri ◽  
John L. Junkins

AbstractA central problem in orbit transfer optimization is to determine the number, time, direction, and magnitude of velocity impulses that minimize the total impulse. This problem was posed in 1967 by T. N. Edelbaum, and while notable advances have been made, a rigorous means to answer Edelbaum’s question for multiple-revolution maneuvers has remained elusive for over five decades. We revisit Edelbaum’s question by taking a bottom-up approach to generate a minimum-fuel switching surface. Sweeping through time profiles of the minimum-fuel switching function for increasing admissible thrust magnitude, and in the high-thrust limit, we find that the continuous thrust switching surface reveals the N-impulse solution. It is also shown that a fundamental minimum-thrust solution plays a pivotal role in our process to determine the optimal minimum-fuel maneuver for all thrust levels. Remarkably, we find that the answer to Edelbaum’s question is not generally unique, but is frequently a set of equal-Δv extremals. We further find, when Edelbaum’s question is refined to seek the number of finite-duration thrust arcs for a specific rocket engine, that a unique extremal is usually found. Numerical results demonstrate the ideas and their utility for several interplanetary and Earth-bound optimal transfers that consist of up to eleven impulses or, for finite thrust, short thrust arcs. Another significant contribution of the paper can be viewed as a unification in astrodynamics where the connection between impulsive and continuous-thrust trajectories are demonstrated through the notion of optimal switching surfaces.


Sign in / Sign up

Export Citation Format

Share Document