Abstract
Background
The visualization of the tibial nerve and its branches in the ankle canal is helpful for the diagnosis of local lesions and compression, and it is also useful for clinical observation and surgical planning. The aim of this study was to investigate the feasibility of three-dimensional dual-excitation balanced steady-state free precession sequence (3D-FIESTA-C) multiplanar reformation (MPR) display of the tibial nerve and its branches in the ankle canal.
Methods
The subjects were 20 healthy volunteers (40 ankles), aged 22–50 years, with no history of ankle joint disease. The 3D-FIESTA-C sequence was used in the 3.0 T magnetic resonance equipment for imaging. During scanning, each foot was at an angle of 90° to the tibia. The tibial nerve of the ankle canal and its branches were displayed and measured at the same level through MPR.
Results
Most of the tibial nerve bifurcation points were located in the ankle canal (57.5%), few bifurcation points (42.5%) were located at the proximal end of the ankle canal, and none of them were found away from the distal end. The bifurcation between the medial plantar nerve and the lateral plantar nerve was on the line between the tip of the medial malleolus and the calcaneus, and it’s angle ranged between 6° and 35°. In MPR images, the display rates of both the medial calcaneal nerve and the subcalcaneal nerve were 100%, and the starting point of the subcalcaneal nerve was always at the distal end of the starting point of the medial calcaneal nerve. In 55% of cases, there were more than two medial calcaneal nerve innervations.
Conclusion
The 3D-FIESTA-C MPR can display the morphological features and positions of the tibial nerve and its branches and the bifurcation point’s projection position can be marked on the body surface. This method not only benefited the imaging diagnosis of the tibial nerve and branch-related lesions in the ankle canal, but it also provided a good imaging basis to plan a clinical operation of the ankle canal and avoid surgical injury.