sulfate minerals
Recently Published Documents


TOTAL DOCUMENTS

129
(FIVE YEARS 30)

H-INDEX

24
(FIVE YEARS 3)

2021 ◽  
Vol 207 ◽  
pp. 105323
Author(s):  
Hongchun Bai ◽  
Xiangyu Bi ◽  
Changqing Liu ◽  
Erbin Shi ◽  
Haijun Cao ◽  
...  

2021 ◽  
Author(s):  
Yusuke Minami ◽  
Keiko Matsumoto ◽  
Nobuo Geshi ◽  
Hiroshi Shinohara

Abstract The activity of the 2018-2019 eruption of Kuchinoerabujima Volcano in Japan changed from continuous ejection of ash-laden plumes between October 21 and the middle of December, to intermittent explosive activity accompanied by several pyroclastic density currents until January 2019. To understand the behaviors of magma and hydrothermal fluid that controlled the eruptive sequence, we carried out component analysis, X-ray diffractometry, and leachate analysis for ash samples. The proportion of non-altered volcanic ash particles is ~15 % in the earlier phase, then it decreased to less than 10 % in the later explosive phase. Accordingly, the mineral assemblage of the volcanic ash samples changed from plagioclase-dominant to sulfate minerals-dominant. Concentration of SO42- and Cl/SO4 values of the ash-leachates decreased toward the later activity. These results indicate that the proportion of fresh volcanic rocks decreased and sulfuric acid fluid-derived sulfate minerals increased toward the later activities. Consequently, the 2018-2019 eruption at Kuchinoerabujima Volcano changed from magmatic activity to phreatomagmatic activity. Weak glowing of the crater was observed during the magmatic activity, indicating the volcanic conduit was hot enough to dry up the subvolcanic hydrothermal system. The following phreatomagmatic activity indicates that the hydrothermal fluid recharged after the magmatic eruption phase. Recharge of the hydrothermal fluid likely caused the variation of the eruption style, and is a process that may control the evolution of hazards during future eruption scenarios at similar active volcanoes in Japan and worldwide.


2021 ◽  
pp. jgs2021-081
Author(s):  
Huan Cui ◽  
Alan J. Kaufman ◽  
Shuhai Xiao ◽  
Chuanming Zhou ◽  
Maoyan Zhu ◽  
...  

Compared with Phanerozoic strata, sulfate minerals are relatively rare in the Precambrian record likely due to the lower concentrations of sulfate in dominantly anoxic oceans. Here, we present a compilation of sulfate minerals that are stratigraphically associated with the Ediacaran Shuram excursion (SE) — the largest negative δ13C excursion in Earth history. We evaluated 15 SE sections, all of which reveal the presence of sulfate minerals and/or concentration enrichment in carbonate-associated sulfate, suggesting a rise in sulfate reservoir. Notably, where data are available, the SE also reveals considerable enrichments in [Ba] relative to pre- and post-SE intervals. We propose that elevated seawater sulfate concentrations during the SE may have faciliated authigenesis of sulfate minerals. At the same time, the rise of Ba concentrations in shelf environments further facilitated barite deposition. A larger sulfate reservoir would stimulate microbial sulfate reduction and anaerobic oxidation of organic matter (including methane), contributing to the genesis of the SE. The existence of sulfate minerals throughout the SE suggests that oxidant pools were not depleted at that time, which challenges previous modelling results. Our study highlights the dynamic interplay of biogeochemical C, S, and Ba cycles in response to the Shuram oxygenation event.Thematic collection: This article is part of the Sulfur in the Earth system collection available at: https://www.lyellcollection.org/cc/sulfur-in-the-earth-systemSupplementary material:https://doi.org/10.6084/m9.figshare.c.5602560


Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 855
Author(s):  
Fengqi Zhao ◽  
Shangyi Gu

Thallium is a highly toxic metal and is predominantly hosted by sulfides associated with low-temperature hydrothermal mineralization. Weathering and oxidation of sulfides generate acid drainage with a high concentration of thallium, posing a threat to surrounding environments. Thallium may also be incorporated into secondary sulfate minerals, which act as temporary storage for thallium. We present a state-of-the-art review on the formation mechanism of the secondary sulfate minerals from thallium mineralized areas and the varied roles these sulfate minerals play in Tl mobility. Up to 89 independent thallium minerals and four unnamed thallium minerals have been documented. These thallium minerals are dominated by Tl sulfosalts and limited to several sites. Occurrence, crystal chemistry, and Tl content of the secondary sulfate minerals indicate that Tl predominantly occurs as Tl(I) in K-bearing sulfate. Lanmuchangite acts as a transient source and sink of Tl for its water-soluble feature, whereas dorallcharite, Tl-voltaite, and Tl-jarosite act as the long term source and sink of Tl in the surface environments. Acid and/or ferric iron derived from the dissolution of sulfate minerals may increase the pyrite oxidation process and Tl release from Tl-bearing sulfides in the long term.


2021 ◽  
pp. 120403
Author(s):  
Pablo del Buey ◽  
M. Esther Sanz-Montero ◽  
Olivier Braissant ◽  
Óscar Cabestrero ◽  
Pieter T. Visscher

2021 ◽  
Vol 7 ◽  
pp. 78-89
Author(s):  
O.Ya. Chervyatsova ◽  
A.V. Kasatkin ◽  
N.V. Chukanov ◽  
F. Nestola

The paper reports on the results of studies of supergene sulfate mineralization found in a tunnel of the Pyatigorskiy Proval cave. The sulfate minerals include humberstonite K3Na7Mg2(SO4)6(NO3)2·6H2O, sid-eronatrite Na2Fe(SO4)2(OH)·3H2O, metasideronatrite Na2Fe(SO4)2(OH)·H2O, natrojarosite NaFe3(SO4)2(OH)6, tamarugite NaAl(SO4)2·6H2O, and epsomite MgSO4·7H2O, which were identifed by electron probe micro-analysis, powder X-ray difraction and infrared spectroscopy. The presence sulfate sulfur can be related to both the oxidation of sulfde grains, which were found in some samples, and the oxidation of gaseous H2S air oxygen. Humberstonite and metasideronatrite are found for the frst time in Russia.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 228
Author(s):  
Jan Parafiniuk ◽  
Rafał Siuda

The subject of this work is the assemblage of anhydrous sulfate minerals formed on burning coal-heaps. Three burning heaps located in the Upper Silesian coal basin in Czerwionka-Leszczyny, Radlin and Rydułtowy near Rybnik were selected for the research. The occurrence of godovikovite, millosevichite, steklite and an unnamed MgSO4, sometimes accompanied by subordinate admixtures of mikasaite, sabieite, efremovite, langbeinite and aphthitalite has been recorded from these locations. Occasionally they form monomineral aggregates, but usually occur as mixtures practically impossible to separate. The minerals form microcrystalline masses with a characteristic vesicular structure resembling a solidified foam or pumice. The sulfates crystallize from hot fire gases, similar to high temperature volcanic exhalations. The gases transport volatile components from the center of the fire but their chemical compositions are not yet known. Their cooling in the near-surface part of the heap results in condensation from the vapors as viscous liquid mass, from which the investigated minerals then crystallize. Their crystallization temperatures can be estimated from direct measurements of the temperatures of sulfate accumulation in the burning dumps and studies of their thermal decomposition. Millosevichite and steklite crystallize in the temperature range of 510–650 °C, MgSO4 forms at 510–600 °C and godovikovite in the slightly lower range of 280–450 (546) °C. These values are higher than those previously reported.


Minerals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 206
Author(s):  
Massimo D’Orazio ◽  
Daniela Mauro ◽  
Marta Valerio ◽  
Cristian Biagioni

A suite of sulfate minerals from the Monte Arsiccio mine (Apuan Alps, Northern Tuscany, Italy), previously identified by using both X-ray diffraction and micro-Raman spectroscopy, was studied through inductively coupled plasma mass spectrometry (ICP-MS), in order to determine their trace-element content. Several elements (Tl, Rb, As, Sb, Co, Ni, Cu, Zn, and Cr) were found above the detection limits. Among them, some are important from an environmental perspective and may reach relatively high concentrations (e.g., Tl = 1370–2988 μg/g; As = 505–1680 μg/g). Thus, these sulfates may act as transient sinks for some of these potentially toxic elements, as well as for sulfate ions and acidity. Indeed, dissolution experiments revealed the ability of these secondary minerals to produce a significant pH decrease of the solutions, as well as the release of Fe, Al, and K as major ions. This work discusses the relation between the budget of trace elements and the crystal chemistry of sulfate minerals and provides new insights about the environmental role played by the sulfate dissolution in controlling the quality of water in acid mine drainage systems.


2021 ◽  
pp. 1-30
Author(s):  
Oleg I. Siidra ◽  
Artem S. Borisov ◽  
Dmitri O. Charkin ◽  
Wulf Depmeier ◽  
Natalia V. Platonova

Sign in / Sign up

Export Citation Format

Share Document