current sensing
Recently Published Documents


TOTAL DOCUMENTS

907
(FIVE YEARS 167)

H-INDEX

35
(FIVE YEARS 6)

Author(s):  
Hideaki MAJIMA ◽  
hiroaki ishihara ◽  
katsuyuki ikeuchi ◽  
toshiyuki ogawa ◽  
yuichi sawahara ◽  
...  

Abstract A cascoded GaN half-bridge with wide-band galvanically isolated current sensor is proposed. A 650-V depletion-mode GaN FET is switched by a low-propagation-delay gate driver in active-mode. The standby and active modes are switched by a 25-V N-ch LDMOS. The current sensor uses the LDMOS as a shunt resistor, gm-cell-based sense amplifier and mixer based isolation amplifier for wider bandwidth. PVT variations of on-resistance of the current-detecting MOSFET are compensated using a reference MOSFET. A digital calibration loop across the isolation is formed to keep the current sensor gain constant within ±1.5% across the whole temperature range. The wide-band current sensor can measure power device switching current. In this study, a cascoded GaN half-bridge switching and inductor current sensing using low-side and high-side device current are demonstrated. The proposed techniques show the possibility of implementing a GaN half-bridge module with isolated current sensor in a package.


2021 ◽  
Author(s):  
Inho Jeon ◽  
Kyounghyun Min ◽  
Jinwoo Park ◽  
Jeongjin Roh ◽  
Deok-Ju Moon ◽  
...  

Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1166
Author(s):  
Wei He

A high-resolution sensor using a piezoelectric drum transducer is proposed for power frequency current sensing (50 Hz or 60 Hz). The utilization of the magnetic circuit helps to enhance the response to the electric currents in the power cords. The high sensitivity of the sensor originates from the superposition of the Ampere forces and the amplified piezoelectric effect of the drum transducer. The feasibility of the sensor was verified by experiments. The device exhibits a broad 3 dB bandwidth of 67.4 Hz without an additional magnetic field bias. The average sensitivity is 31.34 mV/A with a high linearity of 0.49%, and the resolution of the sensor attains 0.02 A. The resolution is much higher than that of the previous piezoelectric heterostructure for two-wire power-cords. Error analysis shows that the uncertainty reaches 0.01865 mV at the current of 2.5 A. Meanwhile, the device can generate a load power of 447.9 nW with an optimal load resistance of 55 KΩ at 10A (f = 50 Hz) in energy harvesting experiments. The features of high sensitivity, excellent linearity, high resolution, low costs, and convenient installation demonstrate the application prospect of the proposed device for measuring power frequency currents in electric power grids.


2021 ◽  
Author(s):  
Yuyang Wei ◽  
Bingqian Li ◽  
Marco Domingos ◽  
Yiming Zhu ◽  
Lingyun Yan ◽  
...  

Abstract Tactile sensors are instrumental for developing the next generation of biologically inspired robotic prostheses with tactile feedback. Despite significant advancements made in current sensing technology, several limitations still exist including the reduced sensing sensitivity under high pressure, lack of compliance of the planar sensor with working surfaces and the demand for sophisticated manufacturing processes. In this study, we investigate the feasibility of using the 3D printing technology for the rapid and simple fabrication of a new conformal tactile sensor with an improved linear sensing range. The auxetic structure is integrated with a biomimetic inter-locked papilla feature which allows to detect multi-directional stimuli. Using the proposed design, the linear sensing range is extended to 0.5MPa and responsive to normal and shear forces with the sensitivities of 2.42KPa^(-1)and 2.20N^(-1) respectively. The proposed tactile sensor was printed on the fingertip of a prosthetic robotic hand to perform the sensorimotor control, or on the proximal femur head and lumbar vertebra for monitoring the bone-on-bone load. The results have shown promising application prospects of the proposed tactile sensor.


Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6069
Author(s):  
Wandee Petchmaneelumka ◽  
Vanchai Riewruja ◽  
Kanoknuch Songsuwankit ◽  
Apinai Rerkratn

Variation in the ambient temperature deteriorates the accuracy of a resolver. In this paper, a temperature-compensation technique is introduced to improve resolver accuracy. The ambient temperature causes deviations in the resolver signal; therefore, the disturbed signal is investigated through the change in current in the primary winding of the resolver. For the proposed technique, the primary winding of the resolver is driven by a class-AB output stage of an operational amplifier (opamp), where the primary winding current forms part of the supply current of the opamp. The opamp supply-current sensing technique is used to extract the primary winding current. The error of the resolver signal due to temperature variations is directly evaluated from the supply current of the opamp. Therefore, the proposed technique does not require a temperature-sensitive device. Using the proposed technique, the error of the resolver signal when the ambient temperature increases to 70 °C can be minimized from 1.463% without temperature compensation to 0.017% with temperature compensation. The performance of the proposed technique is discussed in detail and is confirmed by experimental implementation using commercial devices. The results show that the proposed circuit can compensate for wide variations in ambient temperature.


2021 ◽  
pp. 257-272
Author(s):  
Mattia Rossi ◽  
Nicola Toscani ◽  
Marco Mauri ◽  
Francesco Castelli Dezza
Keyword(s):  

Cancers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 3984
Author(s):  
Kathleen Varty ◽  
Connor O’Brien ◽  
Anna Ignaszak

Breast cancer is the most commonly occurring cancer in women worldwide, and the rate of diagnosis continues to increase. Early detection and targeted treatment towards histological type is crucial to improving outcomes, but current screening methods leave some patients at risk of late diagnosis. The risk of late diagnosis and progressed disease is of particular concern for young women as current screening methods are not recommended early in life. Aptamers are oligonucleotides that can bind with high specificity to target molecules such as proteins, peptides, and other small molecules. They are relatively cheap to produce and are invariable from batch to batch, making them ideal for use in large-scale clinical or screening programs. The use of aptamers for breast cancer screening, diagnosis, and therapeutics is promising, but comparison of these aptamers and their corresponding biomarkers for use in breast cancer is significantly lacking. Here, we compare the currently available aptamers for breast cancer biomarkers and their respective biomarkers, as well as highlight the electrochemical sensors that are in development.


Sign in / Sign up

Export Citation Format

Share Document