capacitive sensors
Recently Published Documents


TOTAL DOCUMENTS

543
(FIVE YEARS 139)

H-INDEX

31
(FIVE YEARS 8)

Author(s):  
Zhuyu Ma ◽  
Yang Zhang ◽  
Kaiyi Zhang ◽  
Hua Deng ◽  
Qiang Fu

Author(s):  
N. S. Pshchelko ◽  
I. M. Sokolova ◽  
D. A. Chigirev

The article deals with the issues related to the technical implementation of environmental sensing using capacitive sensors. It proposes a design of a capacitive sensor of a planar type, and studies physical principles of its operation. The operation of the sensor in two main modes is analyzed: 1) determination of the distance to the object at known electrophysical characteristics of the object; 2) determination of the electrophysical characteristics of the object at a known distance to it. The article provides data of direct measurements of the sensor capacitance and its output signal level under various conditions.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 7961
Author(s):  
K. P. Srinivasan ◽  
T. Muthuramalingam

In the present scenario, a considerable assiduity is provided to develop novel human-machine interface technologies that rapidly outpace the capabilities of display technology in automotive industries. It is necessary to use a new cockpit design in conjunction with a fully automated driving environment in order to enhance the driving experience. It can create a seamless and futuristic dashboard for automotive infotainment application. In the present study, an endeavor was made to equip the In-vehicle bezels with printed capacitive sensors for providing superior sensing capabilities. Silver Nanoparticles based interdigitated pattern electrodes were formed over polycarbonate substrates to make printed capacitive sensors using screen printing process. The developed sensor was investigated to evaluate the qualitative and quantitative measures using direct and in-direct contact of touch. The proposed approach for sensors pattern and fabrication can highly impact on sensor performance in automotive infotainment application due to the excellent spatial interpolation with lower cost, light weight, and mechanical flexibility.


2021 ◽  
Vol 2064 (1) ◽  
pp. 012128
Author(s):  
V E Patrakov ◽  
M S Pedos ◽  
S N Rukin

Abstract The paper describes a semiconductor picosecond pulse generator that can be used to calibrate capacitive high voltage sensors of MV range. The generator is designed as a base unit, to which external pulse converters are connected. In the base unit, semiconductor devices – first a semiconductor opening switch (SOS) and then a semiconductor sharpener (SS) – generate an output pulse with a rise time of 220 ps and a subsequent flat-top of 2 ns in duration. The pulse amplitude is around 1 kV across 50 Ω load. An external diode sharpener generates a pulse with 120 ps rise time and 500-ps flat-top at the amplitude of 850 V. To switch the semiconductor sharpeners to the conducting state, the shock-ionization wave mode is used. Additional pulse converters make it possible to generate output pulses across 50 Ω load with the rise time of 70-150 ps, the pulse duration of 135-310 ps, and the amplitude of 130–480 V. The electrical diagram of the generator and waveforms of the output pulses are presented. An example of the calibration of capacitive sensors of a multi-gigawatt picosecond generator is also shown.


Sensors ◽  
2021 ◽  
Vol 21 (20) ◽  
pp. 6706
Author(s):  
Gabriele Frediani ◽  
Federica Vannetti ◽  
Leonardo Bocchi ◽  
Giovanni Zonfrillo ◽  
Federico Carpi

Reliable, easy-to-use, and cost-effective wearable sensors are desirable for continuous measurements of flexions and torsions of the trunk, in order to assess risks and prevent injuries related to body movements in various contexts. Piezo-capacitive stretch sensors, made of dielectric elastomer membranes coated with compliant electrodes, have recently been described as a wearable, lightweight and low-cost technology to monitor body kinematics. An increase of their capacitance upon stretching can be used to sense angular movements. Here, we report on a wearable wireless system that, using two sensing stripes arranged on shoulder straps, can detect flexions and torsions of the trunk, following a simple and fast calibration with a conventional tri-axial gyroscope on board. The piezo-capacitive sensors avoid the errors that would be introduced by continuous sensing with a gyroscope, due to its typical drift. Relative to stereophotogrammetry (non-wearable standard system for motion capture), pure flexions and pure torsions could be detected by the piezo-capacitive sensors with a root mean square error of ~8° and ~12°, respectively, whilst for flexion and torsion components in compound movements, the error was ~13° and ~15°, respectively.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Jilong Ye ◽  
Fan Zhang ◽  
Zhangming Shen ◽  
Shunze Cao ◽  
Tianqi Jin ◽  
...  

AbstractTo address the resource-competing issue between high sensitivity and wide working range for a stand-alone sensor, development of capacitive sensors with an adjustable gap between two electrodes has been of growing interest. While several approaches have been developed to fabricate tunable capacitive sensors, it remains challenging to achieve, simultaneously, a broad range of tunable sensitivity and working range in a single device. In this work, a 3D capacitive sensor with a seesaw-like shape is designed and fabricated by the controlled compressive buckling assembly, which leverages the mechanically tunable configuration to achieve high-precision force sensing (resolution ~5.22 nN) and unprecedented adjustment range (by ~33 times) of sensitivity. The mechanical tests under different loading conditions demonstrate the stability and reliability of capacitive sensors. Incorporation of an asymmetric seesaw-like structure design in the capacitive sensor allows the acceleration measurement with a tunable sensitivity. These results suggest simple and low-cost routes to high-performance, tunable 3D capacitive sensors, with diverse potential applications in wearable electronics and biomedical devices.


2021 ◽  
pp. 2106066
Author(s):  
Mete Batuhan Durukan ◽  
Melih Ogeday Cicek ◽  
Doga Doganay ◽  
Mustafa Caner Gorur ◽  
Simge Çınar ◽  
...  

2021 ◽  
Author(s):  
Gianni Stano ◽  
Attilio Di Nisio ◽  
Anna Maria Lanzolla ◽  
Mattia Ragolia ◽  
Gianluca Percoco

Abstract In recent years, the exploitation of Additive Manufacturing technologies for the fabrication of different kinds of sensors has abruptly increased: in particular, a growing interest for extrusion-based techniques has emerged. This research proposes the exploitation of Fused Filament Fabrication (FFF) process and two commercial materials (one flexible and one conductive) for the monolithic fabrication of a bendable, coplanar capacitive sensor. The whole sensor, consisting of a flexible substrate and two electrodes, has been fabricated in a single-step printing cycle: Design for Additive Manufacturing approach was used, setting out a methodology to direct 3D print thin and close tracks with conductive materials, in order to obtain high capacitance values measurable by common measurement instrumentations. Despite a huge exploitation of FFF technology for piezoresistive-based sensors, this manufacturing process has never been used for the fabrication of coplanar capacitive sensors since the manufacture of thin and close conductive tracks (key requirement in coplanar capacitive sensors) is a challenging task, mainly due to low manufacturability of extruded conductive beads with a high level of detail. Two versions of the sensor were developed: the first one with an embedded 3D printed coverage (ready to use) and the second one which requires a further manual post-processing to seal the electrodes. The main benefits related to the exploitation of FFF technology for these sensors are: i) the reduction of the number of different manufacturing processes employed, from at least two in traditional manufacturing approach up to one, ii) the exploitation of a cost-effective technology compared to traditional high-cost technologies employed (i.e. lithography, inkjet etc.) iii) the reduction of manual and assembly tasks (one of the proposed versions does not require any further task) , and iv) the cost-effectiveness of the sensors (in a range between 0.27 € and 0.38 €). The two developed prototypes have been tested demonstrating all their potentialities in the field of liquid level sensing, showing results consistent with the ones found in scientific literature: good sensitivity and high linearity and repeatability were proved when different liquids were employed. These 3D printed liquid level sensors have these features: i) flexible sensor, ii) the length is limited only by the machine workspace, iii) they can be either applied outside of the traditional reservoirs or embedded into the reservoirs (by 3D printing both the reservoir and sensor in the same manufacturing cycle), and iv) simple calibration.Finally, the bendability of these sensors paves the way toward their application for liquid level sensing into tanks with non-conventional shapes and for other application fields (i.e. soft robotics, non-invasive monitoring for biomedical applications).


Sign in / Sign up

Export Citation Format

Share Document