minimal nonnegative solution
Recently Published Documents


TOTAL DOCUMENTS

5
(FIVE YEARS 0)

H-INDEX

1
(FIVE YEARS 0)

2017 ◽  
Vol 2017 ◽  
pp. 1-8
Author(s):  
Pei-Chang Guo

For the nonlinear matrix equations arising in the analysis of M/G/1-type and GI/M/1-type Markov chains, the minimal nonnegative solution G or R can be found by Newton-like methods. We prove monotone convergence results for the Newton-Shamanskii iteration for this class of equations. Starting with zero initial guess or some other suitable initial guess, the Newton-Shamanskii iteration provides a monotonically increasing sequence of nonnegative matrices converging to the minimal nonnegative solution. A Schur decomposition method is used to accelerate the Newton-Shamanskii iteration. Numerical examples illustrate the effectiveness of the Newton-Shamanskii iteration.


2014 ◽  
Vol 4 (4) ◽  
pp. 386-395
Author(s):  
Pei-Chang Guo

AbstractIn order to determine the stationary distribution for discrete time quasi-birth-death Markov chains, it is necessary to find the minimal nonnegative solution of a quadratic matrix equation. The Newton-Shamanskii method is applied to solve this equation, and the sequence of matrices produced is monotonically increasing and converges to its minimal nonnegative solution. Numerical results illustrate the effectiveness of this procedure.


Sign in / Sign up

Export Citation Format

Share Document