piezoelectric polymers
Recently Published Documents


TOTAL DOCUMENTS

125
(FIVE YEARS 22)

H-INDEX

17
(FIVE YEARS 2)

2021 ◽  
pp. 026248932110558
Author(s):  
Ikrame Najihi ◽  
Chouaib Ennawaoui ◽  
Abdelowahed Hajjaji ◽  
Yahia Boughaleb

Efficient energy harvesting is a difficult challenge that consists in the development of systems allowing charging autonomous and low-power devices. In addition to traditional piezoelectric polymers, mono-crystals, and ceramics, cellular electrets offer consistent solutions by converting wasted vibration energy from the environment to usable electrical energy. This paper presents an electromechanical model to study the energy harvesting capability of cellular polymers. The theoretical study models the response of these materials to investigate the effect of different parameters on the piezoelectric coefficient d33, particularly. The model considers the percentage of porosity, surface charge density in each polymer–gas surface, the properties of the polymer matrix and the gas encapsulated in the pores, and the Young’s modulus of the porous film. For poly(ethylene-co-vinyl acetate), the results showed that the piezoelectric performance of the film declines with the increase of the film thickness. However, the variation of the d33 as a function of the percentage of porosity is exponential and can achieve 4.24 pC/N for a porosity of 80%. Compared to a previously published experiment, the theoretical results have proven a good agreement with only 3.3% error.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6132
Author(s):  
Etienne Lemaire ◽  
Damien Thuau ◽  
Jean-Baptiste De Vaulx ◽  
Nicolas Vaissiere ◽  
Atilla Atli

More than one century ago, piezoelectricity and ferroelectricity were discovered using Rochelle salt crystals. Today, modern societies are invited to switch to a resilient and circular economic model. In this context, this work proposes a method to manufacture piezoelectric devices made from agro-resources such as tartaric acid and polylactide, thereby significantly reducing the energy budget without requiring any sophisticated equipment. These piezoelectric devices are manufactured by liquid-phase epitaxy-grown Rochelle salt (RS) crystals in a 3D-printed poly(Lactic acid) (PLA) matrix, which is an artificial squared mesh which mimics anatomy of natural wood. This composite material can easily be produced in any fablab with renewable materials and at low processing temperatures, which reduces the total energy consumed. Manufactured biodegradable samples are fully recyclable and have good piezoelectric properties without any poling step. The measured piezoelectric coefficients of manufactured samples are higher than many piezoelectric polymers such as PVDF-TrFE.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
M. Shehzad ◽  
S. Wang ◽  
Y. Wang

AbstractThe simple structure of flexible piezoelectric polymers implies promise innumerous applications, such as transparent loudspeakers. In this study, we fabricated and characterized a prototype loudspeaker device. The loudspeaker was fabricated using a straightforward method of sandwiching a film of copolymer blend between a pair of flexible ITO substrates, which served as top and bottom electrodes. The dependence of acoustic properties of the devices was investigated in accordance with d33 and piezoresponse force microscopy (PFM). In this study, we examine the sound pressure level (SPL) and sound intensity (SI) of devices featuring 0.5 ≤ α ≤ 0.9 blends, with an active area of 6.5 cm × 5 cm at 100 Vpp applied voltage. Here we report SPL of 96 dB and SI of 3.98 m Wm−2 for an α = 0.7 blend at 100 Vpp. Our results are helpful in developing flexible, transparent piezoelectric polymers and in the development of lightweight, transparent loudspeaker devices.


Author(s):  
Etienne Lemaire ◽  
Damien Thuau ◽  
Jean-Baptiste De Vaulx ◽  
Nicolas Vaissiere ◽  
Atli Atilla

One century ago, ferroelectricity and then piezoelectricity were discovered using Rochelle salt crystals. Today, modern societies are invited to switch towards a resilient and circular economy model. In this context, this work proposes a method to manufacture piezoelectric devices made from agro-resources such as tartric acid and polylactide significantly reducing the energy budget without requiring any sophisticated equipement. These piezoelectric devices are manufactured by liquid phase epitaxy grown Rochelle salt (RS) crystals into a 3D printed poly(Lactic acid) (PLA) matrix being the artificial squared meshes which mimic the natural wood anatomy. This composite material can easily be produced in any fablab with renewable materials and at low processsing temperatures, reducing then the total energy consumed. Manufactured biodegradable samples are fully recyclable and have good piezoelectric properties without any pooling step. The measured piezoelectric coefficients of manufactured samples are higher than many piezoelectric polymers such as PVDF-TrFE.


2021 ◽  
Author(s):  
Harshal Gade ◽  
Sreevalli Bokka ◽  
George G. Chase

Electrospun fibers are of interest in a number of applications due to their small size, simplicity of fabrication, and ease of modification of properties. Piezoelectric polymers such as Polyvinylidene Fluoride (PVDF) can be charged when formed in the electrospinning process. This chapter discusses fabrication of PVDF fiber mats and fiber yarns and the measurement of their charge using a custom-made Faraday bucket. The results show the measured charge per mass of fiber mats was greater than the values measured for the yarns of the same mass. The measured charges may be related to both mass and external surface areas of the mats and yarn samples. It was observed the area/mass ratios of the fiber yarns were more than 30% less than the fiber mats.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yanfei Huang ◽  
Guanchun Rui ◽  
Qiong Li ◽  
Elshad Allahyarov ◽  
Ruipeng Li ◽  
...  

AbstractPiezoelectric polymers hold great potential for various electromechanical applications, but only show low performance, with |d33 | < 30 pC/N. We prepare a highly piezoelectric polymer (d33 = −62 pC/N) based on a biaxially oriented poly(vinylidene fluoride) (BOPVDF, crystallinity = 0.52). After unidirectional poling, macroscopically aligned samples with pure β crystals are achieved, which show a high spontaneous polarization (Ps) of 140 mC/m2. Given the theoretical limit of Ps,β = 188 mC/m2 for the neat β crystal, the high Ps cannot be explained by the crystalline-amorphous two-phase model (i.e., Ps,β = 270 mC/m2). Instead, we deduce that a significant amount (at least 0.25) of an oriented amorphous fraction (OAF) must be present between these two phases. Experimental data suggest that the mobile OAF resulted in the negative and high d33 for the poled BOPVDF. The plausibility of this conclusion is supported by molecular dynamics simulations.


2021 ◽  
Vol 270 ◽  
pp. 01012
Author(s):  
Denis Misiurev ◽  
Ştefan Ţălu ◽  
Rashid Dallaev ◽  
Dinara Sobola ◽  
Mariya Goncharova

Limitations of ceramic piezomaterials (brittleness, toxicity of lead-containing samples, difficulties of complicated shapes preparations, etc.) call for the research in the field of piezoelectric polymers. One of them is polyvinylidene fluoride (PVDF). It could be prepared in various forms: thin films, bulk samples, fibers. PVDF fibers attract the most attention because of high flexibility, lightweight, mechanical stability, chemical inertness. Properties of PVDF fibers can be tuned using dopant material: ceramic particles, metal nanoparticles, graphite materials as graphene oxide or carbon nanotubes (CNT).


Author(s):  
JIANG YANG ◽  
F Xu ◽  
Hanxiao Jiang ◽  
Conghuan Wang ◽  
Xingjia Li ◽  
...  

Piezoelectric materials are well known for their applications in self-powered sensing and mechanical energy harvesting. With the development of Internet of Things and wearable electronics, piezoelectric polymers are attracting more...


Sign in / Sign up

Export Citation Format

Share Document